8. [12 points] Consider the region \mathcal{R} bounded by the curve $x^{2}+3 y=4$ and the x-axis.

a. [4 points] Write an expression involving one or more integrals that gives the perimeter, in cm , of \mathcal{R}. You do not need to evaluate the integral.

Solution: The parabola intersects the x-axis at $x= \pm 2$. Moreover, we find $y=\frac{1}{3}\left(4-x^{2}\right)$ so $\frac{d y}{d x}=\frac{2}{3} x$. We plug this into the arc length formula and add the length along the bottom.

Answer:

$$
\int_{-2}^{2} \sqrt{1+\frac{4}{9} x^{2}} d x+4
$$

b. [4 points] Write an expression involving one or more integrals that gives the volume, in cm^{3}, of the solid formed by rotating \mathcal{R} about the line $x=-4$.
Solution: Using shell method:

$$
\int_{-2}^{2} 2 \pi(x-(-4)) \frac{1}{3}\left(4-x^{2}\right) d x \mathrm{~cm}^{3}=\frac{2 \pi}{3} \int_{-2}^{2}(x+4)\left(4-x^{2}\right) d x \mathrm{~cm}^{3}
$$

Using washer method:

$$
\int_{0}^{4 / 3} \pi(\sqrt{4-3 y}-(-4))^{2}-\pi(-\sqrt{4-3 y}-(-4))^{2} d y
$$

Answer: (see above)
c. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region R that has mass density given by $\delta(x)=x+2 \mathrm{~g} / \mathrm{cm}^{2}$.

Answer: $\quad \int_{-2}^{2} \frac{1}{3}\left(4-x^{2}\right)(x+2) d x$

