8. [12 points] Consider the region  $\mathcal{R}$  bounded by the curve  $x^2 + 3y = 4$  and the x-axis.



**a**. [4 points] Write an expression involving one or more integrals that gives the perimeter, in cm, of  $\mathcal{R}$ . You do not need to evaluate the integral.

Solution: The parabola intersects the x-axis at  $x = \pm 2$ . Moreover, we find  $y = \frac{1}{3}(4-x^2)$  so  $\frac{dy}{dx} = \frac{2}{3}x$ . We plug this into the arc length formula and add the length along the bottom.

**Answer:** 
$$\int_{-2}^{2} \sqrt{1 + \frac{4}{9}x^2} \, dx + 4$$

**b.** [4 points] Write an expression involving one or more integrals that gives the volume, in  $\text{cm}^3$ , of the solid formed by rotating  $\mathcal{R}$  about the line x = -4.

Solution: Using shell method:

$$\int_{-2}^{2} 2\pi (x - (-4)) \frac{1}{3} (4 - x^2) \, dx \, \mathrm{cm}^3 = \frac{2\pi}{3} \int_{-2}^{2} (x + 4) (4 - x^2) \, dx \, \mathrm{cm}^3.$$

Using washer method:

$$\int_0^{4/3} \pi \left(\sqrt{4-3y} - (-4)\right)^2 - \pi \left(-\sqrt{4-3y} - (-4)\right)^2 \, dy$$

(see above) Answer:

c. [4 points] Write, but do not evaluate, an expression involving one or more integrals that gives the mass, in grams, of a thin plate in the shape of the region R that has mass density given by  $\delta(x) = x + 2$  g/cm<sup>2</sup>.

Answer: 
$$\int_{-2}^{2} \frac{1}{3} (4 - x^2) (x + 2) \, dx$$