3. [7 points] The function g defined by $g(x) = \ln(x^2 + 1)$ is differentiable for all x in $(-\infty, \infty)$. For all x > 0, the function $B(x) = \frac{1}{x} \int_0^x \ln(t^2 + 1) \ dt$ gives the average value of g(x) over the interval [0, x].

Note: Your answers may require one or more integral signs. However, neither the letter g nor the letter B should appear in your answers.

a. [4 points] Calculate B'(x).

Answer:
$$B'(x) =$$

b. [3 points] Write a formula for the average value of g' over the interval [0, x].

Answer: Average value of g' over [0, x] equals

- 4. [5 points] Determine whether the integral $\int_0^3 \frac{1}{x^{\pi/4}} dx$ converges or diverges.
 - If the integral converges, circle "Converges", find its exact value, and write the exact value on the answer blank provided.
 - If the integral diverges, circle "Diverges" and carefully justify your answer.

In either case, you must show all your work and use proper notation. Evaluation of integrals must be done **without using a calculator**.

Note that
$$\frac{1}{x^{\pi/4}} = x^{-\pi/4}$$
.

Circle one: