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10. [7 points] Consider functions f and g that satisfy all of the following:
e f(x) is defined, positive, and continuous for all = > 1.

. lim+ f(x) =00 (so f(x) has a vertical asymptote at = = 1).
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e g(z) is defined and differentiable for all real numbers z, and ¢'(x) is continuous.

d (g(“")> — f(z) forall 2 > 1.
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e The tangent line to g(x) at = 1 is given by the equation y = §(x —1). Graphs of g(x)
(solid) and this tangent line (dashed) are shown below.
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Determine whether the integral f(x) dx converges or diverges.

o If the integral converges, cifcle “Converges”, find its exact value, and write the exact
value on the answer blank provided.

e If the integral diverges, circle “Diverges” and carefully justify your answer.

Show every step of your work carefully, and make sure that you use correct notation.

Solution: Since f(x) has a vertical asymptote at = = 1, we write
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So this improper integral converges.
Clircle one:
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