- 11. [12 points] For each of the questions below, circle <u>all</u> of the available correct answers. Circle "NONE OF THESE" if none of the available choices are correct. No credit will be awarded for unclear markings. No justification is necessary.
 - **a**. [4 points] Suppose f(x) is defined and continuous on $(-\infty, \infty)$. Which of the following <u>MUST</u> be true?
 - i. If a and b are constants with a ≠ b, then F(x) = ∫_a^x f(t) dt and G(x) = ∫_b^x f(t) dt are different functions.
 ii. The function F(x) = ∫_a^x f(t) dt is an antiderivative of f(x) with the property that F(a) = 0.
 iii. Every antiderivative of f(x) is equal to ∫_c^x f(t) dt, for some choice of constant c.
 iv. The function J(x) = ∫_{-x}² f(-t) dt is an antiderivative of f(x).
 - v. NONE OF THESE
 - **b.** [4 points] Suppose g(t) has a positive second derivative for all values of t. Also suppose LEFT(10), RIGHT(10), TRAP(10), and MID(10) are all estimates of the integral ℓ^5
 - $\int_{0}^{0} g(t) dt$. Which of the following are POSSIBLE?

i.
$$\int_{2}^{5} g(t) dt < \text{RIGHT}(10)$$

ii.
$$\int_{2}^{5} g(t) dt < \text{TRAP}(10)$$

iii.
$$\int_2^5 g(t) \, dt < \text{MID}(10)$$

RIGHT(10) = MID(10) - 50

v. LEFT(10) = MID(10) - 100 and

- vi. LEFT(10) = MID(10) 100 and RIGHT(10) = MID(10) + 50
- vii. LEFT(10) = MID(10) + 100 andRIGHT(10) = MID(10) - 50
- iv. LEFT(10) = TRAP(10) + 100 and RIGHT(10) = TRAP(10) + 50

viii. NONE OF THESE

c. [4 points] Which of the following are antiderivatives of $h(x) = e^x \cos x$?

i.
$$J(x) = \int_{1}^{e^{x}} \cos(\ln t) dt$$

ii.
$$K(x) = \frac{1}{2}e^{x} \cos x + \frac{1}{2}e^{x} \sin x + 4$$

iii.
$$L(x) = \int_0^x e^t \cos t \, dt$$

iv.
$$M(x) = \int_0^{x+2\pi} e^{t-2\pi} \cos t \, dt$$

V. NONE OF THESE