3. [7 points] The function g defined by $g(x)=\ln \left(x^{2}+1\right)$ is differentiable for all x in $(-\infty, \infty)$. For all $x>0$, the function $B(x)=\frac{1}{x} \int_{0}^{x} \ln \left(t^{2}+1\right) d t$ gives the average value of $g(x)$ over the interval $[0, x]$.
Note: Your answers may require one or more integral signs. However, neither the letter g nor the letter B should appear in your answers.
a. [4 points] Calculate $B^{\prime}(x)$.

Solution: Using the product rule and the Construction Theorem (aka Second Fundamental Theorem of Calculus), we have

$$
\begin{aligned}
B^{\prime}(x) & =\left(\frac{d}{d x}\left(\frac{1}{x}\right)\right) \cdot \int_{0}^{x} \ln \left(t^{2}+1\right) d t+\frac{1}{x} \cdot \frac{d}{d x}\left(\int_{0}^{x} \ln \left(t^{2}+1\right) d t\right) \\
& =\frac{-\int_{0}^{x} \ln \left(t^{2}+1\right) d t}{x^{2}}+\frac{\ln \left(x^{2}+1\right)}{x}=\frac{x \ln \left(x^{2}+1\right)-\int_{0}^{x} \ln \left(t^{2}+1\right) d t}{x^{2}}
\end{aligned}
$$

Note that although it is possible to compute the integral $\int_{0}^{x} \ln \left(t^{2}+1\right) d t$, it is not necessary to do so here.

Answer: $\quad B^{\prime}(x)=$

$$
\frac{x \ln \left(x^{2}+1\right)-\int_{0}^{x} \ln \left(t^{2}+1\right) d t}{x^{2}}
$$

b. [3 points] Write a formula for the average value of g^{\prime} over the interval $[0, x]$.

Solution: $\quad($ for $x \neq 0)$
Average value of g^{\prime} over $[0, x]=\frac{1}{x-0} \int_{0}^{x} g^{\prime}(t) d t=\frac{1}{x}(g(x)-g(0))$

$$
=\frac{\ln \left(x^{2}+1\right)-\ln (0+1)}{x}=\frac{\ln \left(x^{2}+1\right)}{x}
$$

Answer: Average value of g^{\prime} over $[0, x]$ equals

$$
\frac{\ln \left(x^{2}+1\right)}{x}
$$

