8. [12 points] Use the following graph and table to calculate the integrals below.

The table below gives several values of a dif- Let g be the piecewise linear function with ferentiable function f and its derivative f^{\prime}. graph shown below.
Assume that both $f(x)$ and $f^{\prime}(x)$ are positive and continuous.

x	-2	-1	0	1	3
$f(x)$	0.5	3	4	10	30
$f^{\prime}(x)$	2	0.5	5	2	22

You are not required to show your work on this problem. However, limited partial credit may be awarded based on work shown.
For each of parts a.-c. below, find the exact value of the given quantity. If there is not enough information provided to find the exact value, write "not enough info."
All your answers must be in exact form.

a. [4 points] Find $\int_{3}^{4} t g^{\prime}(t) d t$.

Solution: Use integration by parts, with $u=t$ and $v^{\prime}=g^{\prime}(t)$, so $u^{\prime}=1$ and $v=g(t)$:

$$
\begin{gathered}
\int_{3}^{4} t g^{\prime}(t) d t=\left.t g(t)\right|_{3} ^{4}-\int_{3}^{4} g(t) d t \\
=4 g(4)-3 g(3)-1 \\
=0-6-1 \\
=-7
\end{gathered}
$$

Alternatively, noting that $g^{\prime}(t)=-2$ on the interval $[3,4]$, we have

$$
\int_{3}^{4} t g^{\prime}(t) d t=-2 \int_{3}^{4} t d t=-\left.t^{2}\right|_{3} ^{4}=-16+9=-7 .
$$

Answer: \qquad
b. [4 points] Find $\int_{-1}^{1} \frac{2 f^{\prime}(2 x+1)}{f(2 x+1)} d x$.

Solution: Using the substitution $w=f(2 x+1)$, so $d w=2 f^{\prime}(2 x+1)$:

$$
\begin{aligned}
& \int_{3}^{30} \frac{1}{w} d w=\left.\ln |w|\right|_{3} ^{30} \\
& \quad=\ln |30|-\ln |3|
\end{aligned}
$$

Answer:

$$
\ln |30|-\ln |3|=\ln |10|
$$

c. $\left[4\right.$ points] Find $\int_{1}^{3} \frac{f^{\prime}(x)(7 f(x)+11)}{(f(x)+1)(2 f(x)+4)} d x$.

Solution: Starting with the substitution $w=f(x)$, so that $d w=f^{\prime}(x) d x$, the integral becomes

$$
\int_{10}^{30} \frac{7 w+11}{(w+1)(2 w+4)} d w
$$

We now perform a partial fraction decomposition:

$$
\begin{aligned}
& \frac{7 w+11}{(w+1)(2 w+4)}=\frac{A}{w+1}+\frac{B}{2 w+4} \\
& 7 w+11=A(2 w+4)+B(w+1)
\end{aligned}
$$

Letting $w=-1$ and $w=-2$, we find that

$$
4=2 A(\text { so } A=2) \text { and }-3=-B(\text { so } B=3) .
$$

Consequently,

$$
\begin{gathered}
\int_{10}^{30} \frac{7 w+11}{(w+1)(2 w+4)} d w=\int_{10}^{30} \frac{2}{w+1}+\frac{3}{2 w+4} d w \\
=\left.\left(2 \ln |w+1|+\frac{3}{2} \ln |2 w+4|\right)\right|_{10} ^{30} \\
=2 \ln |31|+\frac{3}{2} \ln |64|-2 \ln |11|-\frac{3}{2} \ln |24|
\end{gathered}
$$

Answer:

$$
2 \ln (31)+\frac{3}{2} \ln (64)-2 \ln (11)-\frac{3}{2} \ln (24)=2 \ln (31 / 11)+\frac{3}{2} \ln (8 / 3)
$$

