7. [6 points] Split the function $\frac{5 x^{2}-7 x}{(x-1)^{2}(x+1)}$ into partial fractions with two or more terms. Do not integrate these terms. Be sure to show all work to obtain your partial fractions.
Solution: Let

$$
\frac{5 x^{2}-7 x}{(x-1)^{2}(x+1)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1} .
$$

Solution 1: To solve for B : multiply both sides by $(x-1)^{2}$, then put $x=1$:

$$
\begin{aligned}
\frac{5 x^{2}-7 x}{x+1} & =A(x-1)+B+C \frac{x-1}{x+1} \\
\frac{-2}{2} & =0+B+0, B=-1
\end{aligned}
$$

To solve for C : multiply both sides by $x+1$, then put $x=-1$:

$$
\begin{gathered}
\frac{5 x^{2}-7 x}{(x-1)^{2}}=A \frac{x+1}{x-1}+B \frac{x+1}{(x-1)^{2}}+C, \\
\frac{12}{4}=0+0+C, C=3 .
\end{gathered}
$$

To solve for A, clear the denominator, and compare the coefficients.

$$
5 x^{2}-7 x=A(x-1)(x+1)-(x+1)+3(x-1)^{2}=(A+3) x^{2}-7 x+(2-A) .
$$

Say we look at the coefficients of x^{2} :

$$
5=A+3, A=2 .
$$

Therefore,

$$
\frac{5 x^{2}-7 x}{(x-1)^{2}(x+1)}=\frac{2}{x-1}-\frac{1}{(x-1)^{2}}+\frac{3}{x+1} .
$$

Solution 2: Clear the denominator.
$5 x^{2}-7 x=A(x-1)(x+1)+B(x+1)+C(x-1)^{2}=(A+C) x^{2}+(B-2 C) x+(-A+B+C)$.
Compare the coefficients.

$$
A+C=5, B-2 C=-7,-A+B+C=0 .
$$

Solve the system of equations. An easy way is to write $A=5-C, B=2 C-7$, and we then have $-(5-C)+(2 C-7)+C=0$. We have that $A=2, B=-1, C=3$.
8. [13 points] Let $f(x)$ be a twice differentiable function with

- $f(0)=1$.
- $f(\ln 2)=\frac{5}{4}$.
- $f^{\prime}(0)=e$.
- $f^{\prime}(\ln 2)=2$.
a. [3 points] Compute the average value of $f^{\prime}(x)$ on $[0, \ln 2]$.

Solution: The average value is

$$
\frac{1}{\ln 2-0} \int_{0}^{\ln 2} f^{\prime}(x) d x=\frac{1}{\ln 2}(f(\ln 2)-f(0))=\frac{1}{\ln 2}\left(\frac{5}{4}-1\right) .
$$

b. [5 points] Compute the exact value of $\int_{0}^{\ln 2} x f^{\prime \prime}(x) d x$.

Solution:

$$
\begin{aligned}
\int_{0}^{\ln 2} x f^{\prime \prime}(x) d x & =\left(x f^{\prime}(x)\right)_{0}^{\ln 2}-\int_{0}^{\ln 2} f^{\prime}(x) d x \\
& =\left(\ln 2 f^{\prime}(\ln 2)-0 f^{\prime}(0)\right)-(f(\ln 2)-f(0)) \\
& =2 \ln 2-\frac{5}{4}+1
\end{aligned}
$$

c. [5 points] Compute the exact value of $\int_{0}^{\ln 2} \frac{f^{\prime}(x)}{\sqrt{9-(f(x))^{2}}} d x$.

Solution: Let $w=f(x)$. The new upper and lower bounds are $f(0)=1$ and $f(\ln 2)=\frac{5}{4}$ respectively.

$$
\int_{0}^{\ln 2} \frac{f^{\prime}(x)}{\sqrt{9-(f(x))^{2}}} d x=\int_{1}^{\frac{5}{4}} \frac{1}{\sqrt{9-w^{2}}} d w
$$

Let $w=3 \sin \theta$. The new θ-bounds are $\sin ^{-1} \frac{1}{3}$ and $\sin ^{-1} \frac{5}{12}$ respectively.

$$
\begin{aligned}
\int_{1}^{\frac{5}{4}} \frac{1}{\sqrt{9-w}} d w & =\int_{\sin ^{-1} \frac{1}{3}}^{\sin ^{-1} \frac{5}{12}} \frac{3 \cos \theta}{\sqrt{9-9 \sin ^{2} \theta}} d \theta \\
& =\int_{\sin ^{-1} \frac{1}{3}}^{\sin ^{-1} \frac{5}{12}} 1 d \theta \\
& =\sin ^{-1} \frac{5}{12}-\sin ^{-1} \frac{1}{3} .
\end{aligned}
$$

