2. [10 points]

Sketch a continuous antiderivative $F(x)$ to the function $f(x)$ graphed above, such that $F(2)=$ -1 . The function $f(x)$ is odd on $[-2,2]$. Make sure to clearly label the input and output values at $x=-2,2,5$, and 6 . Be sure to make it clear where the graph is concave up, concave down, or linear, and where it is increasing or decreasing.

Solution:

The required labeled values are included in the graph below, and the value at $x=-6$ should be one less than the value at $x=-5$. The function should be increasing on $[-6,-4.5]$ and $[0,6]$, decreasing on $[-4.5,0]$, with maximum and minimum at the transition points (Near -4.5 is sufficient, as there is no way to determine this exactly). The graph should be concave down on $[-6,-2],[2,4]$ and $[4,6]$, and concave up on $[-2,2]$. The graph should level off approaching 4 from the left, as the graph of the derivative is approaching zero.

