3. [12 points]
a. [6 points] Split the following function into partial fractions. Do not integrate the result. Be sure to show all your work.

$$
\frac{10 x+2}{(x-1)^{2}(x+2)}
$$

Solution: Start by splitting:

$$
\frac{10 x+2}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}
$$

By giving terms a common denominator, we get:

$$
\begin{equation*}
10 x+2=A(x-1)(x+2)+B(x+2)+C(x-1)^{2} . \tag{1}
\end{equation*}
$$

Method 1: (Comparing Coefficients) If we distribute terms, we get

$$
0 x^{2}+10 x+2=(A+C) x^{2}+(A+B-2 C) x+(-2 A+2 B+C) .
$$

This gives the system of equations:

$$
A+C=0 \quad A+B-2 C=10 \quad-2 A+2 B+C=2
$$

which we can solve for the values: $A=2, B=4, C=-2$.

Method 2: (Pluggin In Values) If we plug $x=1$ into (1) we get

$$
10(1)+2=A(1-1)(1+2)+B(1+2)+C(1-1)^{2}
$$

This simplifies to give $12=3 B$ and therefore $B=4$.
If we plug in $x=-2$

$$
10(-2)+2=A(-2-1)(-2+2)+B(-2+2)+C(-2-1)^{2}
$$

This gives $-18=9 C$ and therefore $C=-2$.
Then, plugging in B, C and $x=-1$, we get:

$$
\begin{aligned}
10(-1)+2 & =A(-1-1)(-1+2)+4(-1+2)+(-2)(-1-1)^{2} \\
& \Rightarrow-8=-2 A+4-8 \\
& \Rightarrow-4=-2 A \Rightarrow A=2 .
\end{aligned}
$$

So we have $A=2, B=4, C=-2$.
b. [6 points] Given the partial fraction decomposition

$$
\frac{-x-10}{(x-3)\left(x^{2}+4\right)}=\frac{-1}{(x-3)}+\frac{x+2}{x^{2}+4},
$$

evaluate the following indefinite integral, show all your steps:

$$
\int \frac{-x-10}{(x-3)\left(x^{2}+4\right)} d x
$$

Solution: Start by substituting and splitting up the integral:

$$
\int \frac{-x-10}{(x-3)\left(x^{2}+4\right)} d x=\int \frac{-1}{x-3} d x+\int \frac{x+2}{x^{2}+4} d x
$$

Then we split up the second integral to get:

$$
\int \frac{-x-10}{(x-3)\left(x^{2}+4\right)} d x=\int \frac{-1}{x-3} d x+\int \frac{x}{x^{2}+4} d x+\int \frac{2}{x^{2}+4} d x
$$

For the first integral we have:

$$
\int \frac{-1}{x-3} d x=-\ln |x-3|+C
$$

For the second integral we use u-substitution with $u=x^{2}+4$ and $d u=2 x d x$ to get

$$
\int \frac{x}{x^{2}+4} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln \left(x^{2}+4\right)+C .
$$

For the final integral, we first rewrite $\frac{2}{x^{2}+4}=\frac{2}{4\left(\left(\frac{x}{2}\right)^{2}+1\right)}=\left(\frac{1}{2}\right) \frac{1}{\left(\frac{x}{2}\right)^{2}+1}$. Then we have:

$$
\int \frac{2}{x^{2}+4} d x=\frac{1}{2} \int \frac{1}{\left(\frac{x}{2}\right)^{2}+1} d x
$$

Using substitution with $u=\frac{x}{2}$, so $d u=\frac{1}{2} d x$, this becomes:

$$
\int \frac{2}{x^{2}+4} d x=\frac{1}{2} \int \frac{1}{\left(\frac{x}{2}\right)^{2}+1} d x=\int \frac{1}{u^{2}+1} d u=\arctan (u)+C=\arctan \left(\frac{x}{2}\right)+C
$$

Putting this all together, we get

$$
\int \frac{-x-10}{(x-3)\left(x^{2}+4\right)} d x=-\ln |x-3|+\frac{1}{2} \ln \left(x^{2}+4\right)+\arctan \left(\frac{x}{2}\right)+C .
$$

