4. [11 points] Consider the shaded region bounded by $f(x)=2 \cos ^{2}\left(\frac{\pi x}{4}\right)$ and $g(x)=\sqrt{4-(x-2)^{2}}+$ 2 shown below.

a. [6 points] Write, but do not compute, an integral for the solid formed by rotating the region around the line $x=5$.
Solution: Shell Method: The height of the shells are given by $h=g(x)-f(x)$, and the radius is the distance of the slice from the line $x=5$. This is given by $r=5-x$. Since we are slicing along the x-axis for shell method, we integrate with respect to x from 0 to 4. Using the shell method formula, we get:

$$
V=\int_{0}^{4} 2 \pi(5-x)\left(\sqrt{4-(x-2)^{2}}+2-2 \cos ^{2}\left(\frac{\pi x}{4}\right)\right) d x
$$

Washer Method: First, we note that this is significantly more complicated than Shell, as both $f(x)$ and $g(x)$ must be inverted to obtain functions of y. Both are also non-one-to-one making inversion more tedious. Secondly, we must split the integral at $y=2$. Therefore we have the following. On $[0,2]$:

$$
r_{\text {in }}(y)=5-\frac{4}{\pi} \arccos \left(-\sqrt{\frac{y}{2}}\right) \quad r_{\text {out }}(y)=5-\frac{4}{\pi} \arccos \left(\sqrt{\frac{y}{2}}\right)
$$

This means the first component of the volume integral is:

$$
V_{1}=\int_{0}^{2} \pi\left(\left(5-\frac{4}{\pi} \arccos \left(\sqrt{\frac{y}{2}}\right)\right)^{2}-\left(5-\frac{4}{\pi} \arccos \left(-\sqrt{\frac{y}{2}}\right)\right)^{2}\right) d y
$$

On [2, 4], we have:

$$
r_{\text {in }}(y)=5-\sqrt{4-(y-2)^{2}}+2 \quad r_{\text {out }}(y)=5-\left(-\sqrt{4-(y-2)^{2}}\right)+2
$$

giving the integral for this part as:

$$
V_{2}=\int_{2}^{4} \pi\left(\left(5-\left(-\sqrt{4-(y-2)^{2}}\right)+2\right)^{2}-\left(5-\left(\sqrt{4-(y-2)^{2}}\right)+2\right)^{2}\right) d y
$$

The final answer is then $V_{1}+V_{2}$, whose full form has been omitted for brevity.
b. [5 points] Write, but do not compute, an expression involving one or more integrals for the perimeter of the region above. Hint: The upper curve is a semicircle.

Solution: We find the area of the two curves separately and add them.
Lower curve: The arclength formula is required. First find $f^{\prime}(x)$ which is given by

$$
2\left(\frac{\pi}{4}\right)\left(\sin \left(\frac{\pi x}{4}\right)\right)\left(2 \cos \left(\frac{\pi x}{4}\right)\right)=\pi\left(\sin \left(\frac{\pi x}{4}\right)\right)\left(\cos \left(\frac{\pi x}{4}\right)\right) .
$$

Then the arclength integral is given by:

$$
L_{1}=\int_{0}^{4} \sqrt{1+\left(\pi \sin \left(\frac{\pi x}{4}\right) \cos \left(\frac{\pi x}{4}\right)\right)^{2}} d x
$$

Upper curve with the hint: The hint says the upper curve is a semicircle. The circle has radius 2 , and so the circumference of the (full) circle is given by 4π, with circumference of the semicircle given by 2π.

Using the hint, the final answer is

$$
L=\int_{0}^{4} \sqrt{1+\left(\pi \sin \left(\frac{\pi x}{4}\right) \cos \left(\frac{\pi x}{4}\right)\right)^{2}} d x+2 \pi
$$

Upper curve without the hint: Use the arclength formula. First find $g^{\prime}(x)$ as

$$
g^{\prime}(x)=\frac{(x-2)}{\sqrt{4-(x-2)^{2}}} .
$$

Then plug in the arclength formula to get

$$
L_{2}=\int_{0}^{4} \sqrt{1+\left(\frac{(x-2)}{\sqrt{4-(x-2)^{2}}}\right)^{2}} d x
$$

Without the hint, the final answer is:

$$
L=\int_{0}^{4} \sqrt{1+\left(\pi \sin \left(\frac{\pi x}{4}\right) \cos \left(\frac{\pi x}{4}\right)\right)^{2}} d x+\int_{0}^{4} \sqrt{1+\left(\frac{(x-2)}{\sqrt{4-(x-2)^{2}}}\right)^{2}} d x
$$

