5. [13 points] The function below has a local minimum at $x=-3$, is linear on $[-2,1]$, and has an inflection point at $x=3$.

For parts a. and b., use the graph of $f(x)$ to determine if the listed quantities are over- or under-estimates for the relevant integral, and write the word OVERESTIMATE or UNDERESTIMATE as appropriate. If there is not enough information, write NI.
a. [4 points] $\int_{-3}^{3} f(x) d x$

$\operatorname{LEFT}(4)$	UNDER
(4)	N.I.

RIGHT(4) \qquad
TRAP (4) \qquad
b. [4 points]
$\int_{-5}^{1} f(x) d x$ LEFT(12) \qquad
N.I.

UNDER
RIGHT(12) N.I.
TRAP(12)
OVER
c. [5 points] The function $f(x)$ on $[1,5]$ is given by the formula $\frac{1}{4}(x-3)^{3}+2$. Write, but do not solve, an integral giving the volume of the shaded region rotated around $y=-2$.

Solution: Washer Method: The inner radius is given by $r_{i n}(x)=2$ and the outer radius is by $r_{\text {out }}(x)=\frac{1}{4}(x-3)^{3}+4$.
Washer formula give:

$$
\int_{1}^{5} \pi\left(\left(\frac{1}{4}(x-3)^{3}+4\right)^{2}-2^{2}\right) d x
$$

Shell Method: Invert the function so we get a function of $y, f(y)=(4(y-2))^{\frac{1}{3}}+3$. Then our shells have height $5-f(y)$ with radius $(2+y)$. Evalutating with the shell formula we have:

$$
\int_{0}^{4} 2 \pi(2+y)\left(5-(4(y-2))^{\frac{1}{3}}+3\right) d y
$$

