7. [13 points] Brad and Shawna are shipwrecked on an island and are building a new ship out of various materials. The ship has a base given by the region enclosed in the figure on the left, with cross-sections perpendicular to the $y$-axis given by the figure on the right. The base is the region bounded by $y=\frac{-5}{4}\left(x^{2}-4\right)$ and $y=0$. The cross-sections have area given by $\frac{4}{9} \ell^{2}$ where $\ell$ is the length of the slice of the base directly below the cross-section. A sample slice of the base of thickness $\Delta y$ is shown in graph on the left, and all distances are given in meters.


Base of Ship


Cross-section of Ship
a. [3 points] Write an expression for the length, $\ell$, of a slice $y$ meters from the $x$-axis. Give units.
Solution:

$$
\ell=2 \sqrt{\frac{-4}{5} y+4} \mathrm{~m}
$$

b. [3 points] Write an expression for the volume of materials needed to construct a crosssectional slice of the ship $y$ meters from the $x$-axis with thickness $\Delta y$ meters. The letter $\ell$ should not appear in your final answer. Give units.
Solution:

$$
\frac{4}{9}\left(2 \sqrt{\frac{-4}{5} y+4}\right)^{2} \Delta y \mathrm{~m}^{3}=\frac{16}{9}\left(\frac{-4}{5} y+4\right) \Delta y \mathrm{~m}^{3}
$$

c. [3 points] The density of the materials used to make the ship varies. The materials used in the cross section $y$ meters from the $x$-axis is given by $\delta(y)=(2 y+5) \mathrm{kg} / \mathrm{m}^{3}$. What is the mass of a cross sectional slice $y$ meters from the $x$-axis with thickness $\Delta y$ meters? Give units.
Solution:

$$
\frac{16}{9}(2 y+5)\left(\frac{-4}{5} y+4\right) \Delta y \mathrm{~kg}
$$

d. [4 points] Write an integral that gives the total mass of the new boat in kg. Do not evaluate your integral.

## Solution:

$$
\frac{16}{9} \int_{0}^{5}(2 y+5)\left(\frac{-4}{5} y+4\right) d y \mathrm{~kg}
$$

