2. [18 points] The table below provides some values for the functions h and H, where

- $h(t)$ is an odd function, with continuous first derivative.
- $H(t)$ is an antiderivative of $h(t)$.

t	1	2	3	4	5
$h(t)$	-8	1	-2	4	$\sqrt{\pi}$
$H(t)$	-3	0	-5	3	6

Use the table above to compute the following integrals. Write your answers using exact form on the blank provided. If there is not enough information to answer a question, write "N.I." Evaluate all integrals. You do not need to simplify your answers, but the letters h or H should not appear in your final answers.
a. [4 points] $\int_{-4}^{4} h^{\prime}(t) d t$

Solution: By the first FTC, and the fact that $h(-4)=-h(4)=-4$ (since h is an odd function), we have

$$
\int_{-4}^{4} h^{\prime}(t) d t=h(4)-h(-4)=4-(-4)=8
$$

Alternatively, we can note that if h is an odd function (i.e. it satisfies $h(t)=-h(-t)$), then h^{\prime} is an even function (as it satisfies $\left.h^{\prime}(t)=-h^{\prime}(-t) \cdot-1=h^{\prime}(-t)\right)$. Therefore,

$$
\int_{-4}^{4} h^{\prime}(t) d t=2 \int_{0}^{4} h^{\prime}(t) d t=2(h(4)-h(0))=2(4-0)=8
$$

where we have used the fact that $h(0)=0$ since h is an odd function.
b. [4 points] $\int_{3}^{2} t h^{\prime}(t) d t$

Solution: We perform integration by parts, with

$$
\begin{aligned}
u=t, & d u=d t \\
d v=h^{\prime}(t) d t, & v=h(t),
\end{aligned}
$$

to get,

$$
\begin{aligned}
\int_{3}^{2} t h^{\prime}(t) d t & =\left.t h(t)\right|_{3} ^{2}-\int_{3}^{2} h(t) d t \\
& =(2 h(2)-3 h(3))-(H(2)-H(3)) \\
& =(2 \cdot 1-3 \cdot(-2))-(0-(-5)) \\
& =2+6-5 \\
& =3 .
\end{aligned}
$$

c. $[4$ points $] \int_{1}^{2} \frac{\cos \left((h(t))^{\frac{1}{3}}\right)}{(h(t))^{\frac{2}{3}}} h^{\prime}(t) d t$

Solution: Let $u=(h(t))^{\frac{1}{3}}$. This gives us $d u=\frac{1}{3} \frac{1}{(h(t))^{\frac{2}{3}}} h^{\prime}(t) d t$, and the change of bounds $t=1 \rightarrow u=(h(1))^{\frac{1}{3}}=(-8)^{\frac{1}{3}}=-2$, and $t=2 \rightarrow u=(h(2))^{\frac{1}{3}}=1^{\frac{1}{3}}=1$. So, we get
$\int_{1}^{2} \frac{\cos \left((h(t))^{\frac{1}{3}}\right)}{(h(t))^{\frac{2}{3}}} h^{\prime}(t) d t=\int_{-2}^{1} 3 \cos u d u=\left.3 \sin u\right|_{-2} ^{1}=3 \sin 1-3 \sin (-2)=3 \sin 1+3 \sin 2$.

Answer:
$3 \sin 1-3 \sin (-2)$
d. [6 points] $\int_{2}^{5} \frac{h(t)}{1+(h(t))^{4}} h^{\prime}(t) d t$

Solution: Let $u=(h(t))^{2}$. This gives us $d u=2 h(t) h^{\prime}(t) d t$, and the change of bounds $t=2 \rightarrow u=(h(2))^{2}=1$, and $t=5 \rightarrow u=(h(5))^{2}=\pi$. So, we get
$\int_{2}^{5} \frac{h(t)}{1+(h(t))^{4}} h^{\prime}(t) d t=\frac{1}{2} \int_{1}^{\pi} \frac{1}{1+u^{2}} d u=\left.\frac{1}{2} \arctan u\right|_{1} ^{\pi}=\frac{1}{2}(\arctan \pi-\arctan 1)=\frac{1}{2}\left(\arctan \pi-\frac{\pi}{4}\right)$.

Answer: $\frac{1}{2} \arctan \pi-\frac{\pi}{8}$

