3. [12 points] Let $f(x)=\frac{9-x}{(x+3)\left(x^{2}+3\right)}$.
a. [7 points] Split the function $f(x)$ into partial fractions with two or more terms. Do not integrate the result. Be sure to show all your work.

Solution: As we have a linear factor and an irreducible (unfactorable) quadratic in the denominator of $f(x)$, we seek a partial fraction decomposition of the form

$$
\frac{9-x}{(x+3)\left(x^{2}+3\right)}=\frac{A}{x+3}+\frac{B x+C}{x^{2}+3} .
$$

By giving terms on the right hand side a common denominator, we get the following equation for the numerators,

$$
9-x=A\left(x^{2}+3\right)+(B x+C)(x+3) .
$$

If we distribute the coefficients, we get

$$
9-x=(A+B) x^{2}+(3 B+C) x+3(A+C)
$$

resulting in the following system of equations,

$$
\begin{aligned}
A+B & =0 \\
3 B+C & =-1, \\
3 A+3 C & =9
\end{aligned}
$$

which we can solve to obtain $A=1, B=-1$, and $C=2$.

Answer:

$$
f(x)=\frac{1}{x+3}+\frac{-x+2}{x^{2}+3} .
$$

b. [3 points] Approximate the integral $\int_{-9}^{-5} f(x) d x$ using MID(2). Write out each term in your sum. You do not need to simplify the numbers in your sum, but the letter f should not appear in your final answer.
Solution: As we are using $\operatorname{MID}(2)$, we divide the interval $[-9,-5]$ into the two equal sub-intervals $[-9,-7]$ and $[-7,-5]$. The midpoints of the sub-intervals are $x=-8$ and $x=-6$ respectively, whereas the width of each of the sub-intervals is 2 . Therefore, we have

$$
\operatorname{MID}(2)=2 \cdot\left(\frac{9-(-8)}{((-8)+3)\left((-8)^{2}+3\right)}+\frac{9-(-6)}{((-6)+3)\left((-6)^{2}+3\right)}\right)
$$

Answer: $\quad \int_{-9}^{-5} f(x) d x \approx \underline{2 \cdot\left(\left(\frac{1}{(-8)+3}+\frac{-(-8)+2}{(-8)^{2}+3}\right)+\left(\frac{1}{(-6)+3}+\frac{-(-6)+2}{(-6)^{2}+3}\right)\right)}$.
c. [2 points] Given that $f^{\prime}(x)$ is decreasing on the interval $(-9,-5)$, is your answer to part b. an overestimate or an underestimate of $\int_{-9}^{-5} f(x) d x$? Circle your choice below. You are not required to provide any justification.

Circle one:
OVERESTIMATE UNDERESTIMATE NOT ENOUGH INFORMATION

