7. [10 points] Jamal is refurbishing a watch and he is placing small white sapphires around the watch face. The existing space on the watch face can accept regularly shaped sapphires of volume (in cubic mm):

$$
V(t)=\int_{-\frac{t}{2}}^{1-t} \sqrt{1-x^{2}} d x
$$

for any number t satisfying $0 \leq t \leq 1$.
a. [4 points] Compute $V^{\prime}(t)$. Your expression should not involve any integrals.

Solution: By the chain rule and the second FTC, we have

$$
V^{\prime}(t)=\sqrt{1-(1-t)^{2}} \cdot(-1)-\sqrt{1-\left(-\frac{t}{2}\right)^{2}} \cdot\left(\frac{-1}{2}\right)
$$

Answer: $\quad V^{\prime}(t)=\quad-\sqrt{1-(1-t)^{2}}+\frac{1}{2} \sqrt{1-\left(-\frac{t}{2}\right)^{2}}$
b. [6 points] Jamal would like to know the volume of the smallest sapphire he can use on the watch face. Given that $V(t)$ has its only critical point at $t \approx \frac{2}{15}$, find the t-value(s) in the interval $0 \leq t \leq 1$ where the minimum of $V(t)$ occurs. Justify your answer using the fact that the graph of $y=\sqrt{1-x^{2}}$ is the top half of the unit circle centered at the origin.
Solution: First, we recall that the global minimum of $V(t)$ on $0 \leq t \leq 1$ can only occur at any critical point(s) in the interval or at the endpoint(s) of the interval.

As we are provided that $t \approx \frac{2}{15}$ is the only critical point, we will first attempt to classify it as a local $\mathrm{min} / \mathrm{max}$. For this, we invoke the first derivative test with the value of V^{\prime} on either side of $t \approx \frac{2}{15}$, say at $t=0$ and $t=1$ for computational convenience. Using our result in part a., we calculate $V^{\prime}(0)=\frac{1}{2}>0$, and $V^{\prime}(1)=-1+\frac{1}{2} \sqrt{\frac{3}{4}}<0$. Therefore, by the first derivative test, $V(t)$ has a local maximum at $t \approx \frac{2}{15}$. Therefore, it cannot be a global minimum.

The only other candidates, for the global minimum, that remain are the endpoints of the interval, namely $t=0$ and $t=1$. We note that $V(0)=\int_{0}^{1} \sqrt{1-x^{2}} d x$ is the area of quarter of the unit circle, whereas $V(1)=\int_{-\frac{1}{2}}^{0} \sqrt{1-x^{2}} d x$ describes an area that is less than that of the quarter unit circle. Therefore, $V(1)<V(0)$, and hence, $t=1$ must be the global minimum of $V(t)$.

Alternatively, we can directly compare the values $V(0), V\left(\frac{2}{15}\right)$, and $V(1)$.

- $V(0)=\int_{0}^{1} \sqrt{1-x^{2}} d x$ is the area of quarter of the unit circle.
- $V(1)=\int_{-\frac{1}{2}}^{0} \sqrt{1-x^{2}} d x$ describes an area that is less than that of the quarter unit circle.
- $V\left(\frac{2}{15}\right)=\int_{-\frac{2}{30}}^{\frac{13}{15}} \sqrt{1-x^{2}} d x$ includes the interval $\left[0, \frac{1}{2}\right]$ which, due to symmetry, implies that $V\left(\frac{2}{15}\right)$ describes an area that is larger than $V(1)$.
As $V(1)$ is smaller than both $V(0)$ and $V\left(\frac{2}{15}\right)$, by the Extreme Value Theorem, $t=1$ must be the global minimum of $V(t)$.

Answer: The minimum of $V(t)$ occurs at $t=$ \qquad _.

