7. [11 points] In an accidental discovery, scientists created the Ultra Bouncy Toy (UBT), which bounces unpredictably due to its unusual shape and irregular density.
The base of the UBT is the region bounded by $y=\sqrt{4-x}$, the x-axis, and the y-axis, shown below to the left. All distances are measured in centimeters (cm). A sample slice of the base of width w and thickness Δy is shown in the graph below to the left. Cross-sections of the UBT perpendicular to the \boldsymbol{y}-axis have the shape shown below to the right. The area of such a cross-section is $10 w^{2}$.

a. [3 points] Write a formula in terms of y for the width w of a slice that is y centimeters above the x-axis. Include units.
\qquad Units: \qquad
b. [3 points] Write an expression that approximates the volume of a slice of the UBT that is y centimeters above the x-axis and has thickness Δy centimeters. Your answer should not involve the letter w. Include units.

Answer:

\qquad Units:

The density of the UBT is given by the function $\delta(y)$, measured in grams per cubic centimeter $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$, where y is the distance from the x-axis in centimeters.
c. [2 points] Write an expression that approximates the mass of a slice of the UBT that is y centimeters above the x-axis and has thickness Δy centimeters. Your answer may include δ, but it should not involve the letter w. Include units.

Answer:

\qquad Units: \qquad
d. [3 points] Write an expression involving an integral that represents the total mass of the UBT. Your answer may include δ. Include units.

Answer: \qquad Units: \qquad

