2. [15 points] A function $g(x)$ is graphed below and has the following properties:

- $g(x)$ is piecewise linear for $x>4$.
- The shaded region has area 5 .

Let $G(x)$ be the continuous antiderivative of $g(x)$ satisfying $G(6)=-1$.
a. [5 points] Use the graph of $g(x)$ to complete the table below with the exact values of $G(x)$.

x	0	4	6	8	10	12
$G(x)$	-2	3	-1	-3	-1	-1

b. [10 points] Sketch a graph of $G(x)$ on the interval $[0,12]$ using the axes provided below. Be sure to pay attention to:

- where $G(x)$ is and is not differentiable;
- where $G(x)$ is increasing, decreasing, or constant;
- where $G(x)$ is concave up, concave down, or linear;
- the slope of $G(x)$ at $x=2$;
- the values of $G(x)$ you found in the table in part a.

Solution: The graph of $G(x)$ is above. Note the following:
The graph of $G(x)$ should be continuous on $[0,12]$. Since $g(x)$ is defined and is continuous on $[0,12]$ except at $x=4$ and $x=10$, then $G(x)$ must be differentiable on $(0,12)$ except at $x=4$ and $x=10$.

Since $g(x)$ is positive on the intervals $(0,4)$ and $(8,10)$, then $G(x)$ should be increasing on $(0,4)$ and $(8,10)$.

Since $g(x)$ is negative on the interval $(4,8)$, then $G(x)$ should be decreasing on $(4,8)$.
Since $g(x)=0$ on the interval $(10,12)$, then $G(x)$ should be constant on $(10,12)$.
Since $g(x)$ is increasing on the intervals $(0,2)$ and $(6,10)$, then $G(x)$ should be concave up on $(0,2)$ and $(6,10)$.

Since $g(x)$ is decreasing on the interval $(2,4)$, then $G(x)$ should be concave down on $(2,4)$.
Since $g(x)$ is constant on the intervals $(4,6)$ and $(10,12)$, then $G(x)$ should be linear on $(4,6)$ and $(10,12)$.

Since $g(2) \approx 2$, then the slope of $G(x)$ at $x=2$ should be approximately 2 .
Finally, the graph of $G(x)$ should contain the points $(0,-2),(4,3),(6,-1),(8,-3),(10,-1)$, and $(12,-1)$.

