5. [14 points]
a. [6 points] Split the following expression into partial fractions with two or more terms.

Do not integrate these terms. Please clearly show all of your work.

$$
\frac{5 x-4}{(x-2)^{2}(x+1)}
$$

Solution: The partial fraction decomposition of the given function has the form

$$
\frac{5 x-4}{(x-2)^{2}(x+1)}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{x+1} .
$$

By multiplying to obtain a common denominator, we have

$$
\begin{equation*}
5 x-4=A(x-2)(x+1)+B(x+1)+C(x-2)^{2} . \tag{*}
\end{equation*}
$$

Below are two possible ways to complete the problem:
Solution 1 (Comparing coefficients): By multiplying out the terms on the right-hand side of the equation $\left(^{*}\right)$ and grouping terms with the same powers of x, we obtain

$$
0 x^{2}+5 x-4=(A+C) x^{2}+(-A+B-4 C) x+(-2 A+B+4 C)
$$

This gives the system of equations

$$
A+C=0, \quad-A+B-4 C=5, \quad-2 A+B+4 C=-4 .
$$

The first equation implies $C=-A$, so the second and third equations become

$$
3 A+B=5, \quad-6 A+B=-4
$$

Taking this first equation and subtracting the second equation from it, we obtain $9 A=9$. Thus $A=1$, so $3 A+B=5$ implies $B=2$, and $C=-A$ implies $C=-1$. This gives us the answer.

Solution 2 (Plugging in values): By setting $x=2$ in the equation (*), we obtain

$$
5(2)-4=A(2-2)(2+1)+B(2+1)+C(2-2)^{2} .
$$

This simplifies to $6=0+3 B+0$, thus $B=2$. Now setting $x=-1$ in $\left(^{*}\right)$, we obtain

$$
5(-1)-4=A(-1-2)(-1+1)+B(-1+1)+C(-1-2)^{2} .
$$

This simplifies to $-9=0+0+9 C$, thus $C=-1$. Finally, setting $x=0$ in $\left(^{*}\right)$ and using the facts that $B=2$ and $C=-1$, we obtain

$$
5(0)-4=A(0-2)(0+1)+2(0+1)+(-1)(0-2)^{2} .
$$

This simplifies to $-4=-2 A+2-4$, thus $A=1$. This gives us the answer.

Answer:

$$
\frac{1}{x-2}+\frac{2}{(x-2)^{2}}+\frac{-1}{x+1}
$$

b. [8 points] Use the partial fraction decomposition

$$
\frac{4 x-2}{(3-x)\left(x^{2}+1\right)}=\frac{1}{3-x}+\frac{x-1}{x^{2}+1}
$$

to evaluate the following indefinite integral. Please clearly show all of your work.

$$
\int \frac{4 x-2}{(3-x)\left(x^{2}+1\right)} d x
$$

Solution: Using the partial fraction decomposition:

$$
\int \frac{4 x-2}{(3-x)\left(x^{2}+1\right)} d x=\int \frac{1}{3-x} d x+\int \frac{x-1}{x^{2}+1} d x
$$

Now we use linearity:

$$
\int \frac{4 x-2}{(3-x)\left(x^{2}+1\right)} d x=\int \frac{1}{3-x} d x+\int \frac{x}{x^{2}+1} d x-\int \frac{1}{x^{2}+1} d x .
$$

The first integral is a standard antiderivative (or, substitute $u=3-x$):

$$
\int \frac{1}{3-x} d x=-\ln |3-x|+C
$$

The second integral can be evaluated using the substitution $u=x^{2}+1$, so that $d u=2 x d x$, and thus

$$
\int \frac{x}{x^{2}+1} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left|x^{2}+1\right|+C .
$$

The third integral is a standard antiderivative:

$$
-\int \frac{1}{x^{2}+1} d x=-\arctan (x)+C
$$

Putting this all together, our final answer is

$$
\int \frac{4 x-2}{(3-x)\left(x^{2}+1\right)} d x=-\ln |3-x|+\frac{1}{2} \ln \left|x^{2}+1\right|-\arctan (x)+C .
$$

Answer:

$$
-\ln |3-x|+\frac{1}{2} \ln \left|x^{2}+1\right|-\arctan (x)+C
$$

