6. [11 points] Louise, a world-famous abstract artist and cheese enthusiast, is experimenting with new designs for cheese sculptures. She has two ideas for a cheese sculpture and would like to know the volume of each one so that she knows how much cheese to buy.
a. [6 points] Louise's first idea involves the shaded region to the right, which is bounded by the line $x=1$ and the curves

$$
a(x)=2+\sin \left(\frac{\pi}{2} x\right) \quad \text { and } \quad b(x)=x^{4}
$$

on the interval $[-1,1]$.
Write an integral that represents the volume of the solid formed by rotating this region around the line $x=2$.
Do not evaluate your integral. Your answer should not involve the letters a or b.

Solution: There are two ways to solve this problem:
Solution 1 (Shell method): The shell method states that the volume of a cylindrical shell of thickness Δx at a point $-1 \leq x \leq 1$ is of the form $2 \pi r(x) h(x) \Delta x$ for some functions $r(x)$ and $h(x)$, representing the radius and height of our cylindrical shell, respectively.

For each $-1 \leq x \leq 1$, the distance from x to the line $x=2$ is given by $2-x$, so $r(x)=2-x$ is the radius of our shell. The height of our shell is $h(x)=a(x)-b(x)$, that is, $h(x)=2+\sin \left(\frac{\pi}{2} x\right)-x^{4}$. This gives us our answer:

$$
\int_{-1}^{1} 2 \pi(2-x)\left(2+\sin \left(\frac{\pi}{2} x\right)-x^{4}\right) d x
$$

Solution 2 (Washer method): Using the washer method is considerably more difficult: we must invert both $a(x)$ and $b(x)$, and we must split the integral at $y=1$. Inverting these functions:

$$
\begin{aligned}
y=2+\sin \left(\frac{\pi}{2} x\right) & \Rightarrow \quad x=\frac{2}{\pi} \arcsin (y-2), \\
y=x^{4} & \Rightarrow \quad x= \pm y^{1 / 4} .
\end{aligned}
$$

The washer method states that the volume of a washer of thickness Δy at a point $0 \leq y \leq 3$ is of the form $\pi\left(R(y)^{2}-r(y)^{2}\right) \Delta y$ for some functions $R(y)$ and $r(y)$, representing the outer radius and inner radius of our washer, respectively.

For $0 \leq y \leq 1$, the outer radius is $R(y)=2+y^{1 / 4}$, and the inner radius is $r(y)=2-y^{1 / 4}$.
For $1 \leq y \leq 3$, the outer radius is $R(y)=2-\frac{2}{\pi} \arcsin (y-2)$, and the inner radius is $r(y)=1$.
Putting this all together, this gives us our answer:

$$
\begin{aligned}
& \int_{0}^{1} \pi\left(\left(2+y^{1 / 4}\right)^{2}-\left(2-y^{1 / 4}\right)^{2}\right) d y+\int_{1}^{3} \pi\left(\left(2-\frac{2}{\pi} \arcsin (y-2)\right)^{2}-1^{2}\right) d y \\
& \text { Answer: } \quad \int_{-1}^{1} 2 \pi(2-x)\left(2+\sin \left(\frac{\pi}{2} x\right)-x^{4}\right) d x
\end{aligned}
$$

b. [5 points] Louise's second idea involves the shaded region to the right, bounded by the curve

$$
c(x)=(\sqrt{3})^{2-x},
$$

the y-axis, and the line $y=1$ on the interval $[0,2]$.
Write an integral that represents the volume of the solid formed by rotating this region around the x-axis.
Do not evaluate your integral. Your answer should not involve the letter c.

Solution: There are two ways to solve this problem:
Solution 1 (Washer method): The washer method states that the volume of a washer of thickness Δx at a point $0 \leq x \leq 2$ is of the form $\pi\left(R(x)^{2}-r(x)^{2}\right) \Delta x$ for some functions $R(x)$ and $r(x)$, representing the outer radius and inner radius of our washer, respectively.

For each $0 \leq x \leq 2$, the outer radius $R(x)$ is given by the distance from the x-axis to $y=c(x)$, which is $R(x)=(\sqrt{3})^{2-x}$. The inner radius $r(x)$ is given by the distance from the x-axis to $y=1$, which is $r(x)=1$. This gives us our answer:

$$
\int_{0}^{2} \pi\left(\left((\sqrt{3})^{2-x}\right)^{2}-1^{2}\right) d x
$$

Solution 2 (Shell method): The shell method requires an additional step, but here it is not too complicated. First we invert the function $c(x)$:

$$
y=(\sqrt{3})^{2-x} \quad \Rightarrow \quad x=2-\frac{\ln (y)}{\ln (\sqrt{3})}
$$

The shell method states that the volume of a cylindrical shell of thickness Δy at a point $1 \leq y \leq 3$ is of the form $2 \pi r(y) h(y) \Delta y$ for some functions $r(y)$ and $h(y)$, representing the radius and height of our cylindrical shell, respectively.

For each $1 \leq y \leq 3$, the radius of our shell is $r(y)=y$, and the height of our shell is $h(y)=2-\frac{\ln (y)}{\ln (\sqrt{3})}$. This gives us our answer:

$$
\int_{1}^{3} 2 \pi y\left(2-\frac{\ln (y)}{\ln (\sqrt{3})}\right) d y
$$

Answer:

$$
\int_{0}^{2} \pi\left(\left((\sqrt{3})^{2-x}\right)^{2}-1^{2}\right) d x
$$

