7. [11 points] In an accidental discovery, scientists created the Ultra Bouncy Toy (UBT), which bounces unpredictably due to its unusual shape and irregular density.

The base of the UBT is the region bounded by $y = \sqrt{4-x}$, the x-axis, and the y-axis, shown below to the left. All distances are measured in centimeters (cm). A sample slice of the base of width wand thickness Δy is shown in the graph below to the left. Cross-sections of the UBT perpendicular to the y-axis have the shape shown below to the right. The area of such a cross-section is $10w^2$.

a. [3 points] Write a formula in terms of y for the width w of a slice that is y centimeters above the *x*-axis. Include units.

b. [3 points] Write an expression that approximates the volume of a slice of the UBT that is y centimeters above the x-axis and has thickness Δy centimeters. Your answer should not involve the letter w. Include units.

Solution: The approximate volume of a slice is given by (volume) = (area of cross-section) Δy . Using part (a), the area of a cross-section is $10w^2 = 10(4-y^2)^2$. Thus the volume of a slice is about $10(4 - y^2)^2 \Delta y \text{ cm}^3$.

Answer:	$10(4-y^2)^2 \Delta y$	_ Units: _	\mathbf{cm}^{3}

The density of the UBT is given by the function $\delta(y)$, measured in grams per cubic centimeter (g/cm^3) , where y is the distance from the x-axis in centimeters.

c. [2 points] Write an expression that approximates the mass of a slice of the UBT that is ycentimeters above the x-axis and has thickness Δy centimeters. Your answer may include δ , but it should not involve the letter w. Include units.

The approximate mass of a slice is given by (mass) = (volume)(density). At a Solution: distance y, the density in an entire slice is approximately $\delta(y)$ g/cm³. By part (b), the volume of a slice is $10(4-y^2)^2 \Delta y$ cm³. Thus the mass of a slice is about $10(4-y^2)^2 \delta(y) \Delta y$ g.

Answer:
$$10(4-y^2)^2 \delta(y) \Delta y$$
 Units: **g**

d. [3 points] Write an expression involving an integral that represents the total mass of the UBT. Your answer may include δ . Include units.

Solution: By part (c), the mass of a slice is approximately $10(4-y^2)^2\delta(y)\Delta y$. The total mass is obtained by taking the integral of the mass of all slices as $\Delta y \to 0$ for $0 \le y \le 2$. This gives our answer in the form of an integral.

Answer:

 $\int_0^2 10(4-y^2)^2 \delta(y) \, dy$

Units: \mathbf{g}