8. [6 points] Each part below describes a twice differentiable function and one or more approximations of its integral. For each of the following statements, determine if the statement is ALWAYS true, SOMETIMES true, or NEVER true, and circle the appropriate answer.
No justification is required.
a. [1 point] If $A^{\prime}(x)>0$ for all x, then $\operatorname{LEFT}(4) \leq \int_{-1}^{1} A(x) d x$.

Circle one:
ALWAYS
SOMETIMES
NEVER
Solution: Since $A^{\prime}(x)>0$, then $A(x)$ is always increasing on $[-1,1]$, so $\operatorname{LEFT}(4)$ is an underestimate of $\int_{-1}^{1} A(x) d x$.
b. [1 point] If $B^{\prime}(x)>0$ for all x, then $\operatorname{TRAP}(4) \leq \int_{-1}^{1} B(x) d x$.

Circle one: ALWAYS SOMETIMES NEVER
Solution: Since $B^{\prime}(x)>0$, then $B(x)$ is always increasing on $[-1,1]$. But we are not given whether $B(x)$ is concave up or concave down on $[-1,1]$, so TRAP (4) could be an underestimate (for example, if $B(x)=-e^{-x}$) or an overestimate (for example, if $B(x)=e^{x}$) of $\int_{-1}^{1} B(x) d x$.
c. [1 point] If $C^{\prime \prime}(x)>0$ for all x, then $\operatorname{TRAP}(4) \leq \int_{-1}^{1} C(x) d x$.

Circle one:
 ALWAYS
 SOMETIMES
 NEVER

Solution: Since $C^{\prime \prime}(x)>0$, then $C(x)$ is always concave up on $[-1,1]$, so $\operatorname{TRAP}(4)$ is an overestimate of $\int_{-1}^{1} C(x) d x$, not an underestimate. Moreover, since $C^{\prime \prime}(x)>0$, then $C(x)$ has no inflection points, so we cannot even have $\operatorname{TRAP}(4)=\int_{-1}^{1} C(x) d x$.
d. [1 point] If $D(x)$ is odd and $\operatorname{MID}(4)$ approximates $\int_{-1}^{1} D(x) d x$, then $\operatorname{MID}(4)=0$.
Circle one: ALWAYS SOMETIMES NEVER

Solution: By direct computation, $\operatorname{MID}(4)=D\left(-\frac{3}{4}\right)+D\left(-\frac{1}{4}\right)+D\left(\frac{1}{4}\right)+D\left(\frac{3}{4}\right)$. But $D(x)$ is odd, so $D\left(-\frac{3}{4}\right)=-D\left(\frac{3}{4}\right)$ and $D\left(-\frac{1}{4}\right)=-D\left(\frac{1}{4}\right)$, therefore $\operatorname{MID}(4)=0$.
e. [1 point] If $E^{\prime}(x)>0$ and $E^{\prime \prime}(x)<0$ for all x, then $\int_{-1}^{1} E(x) d x \leq \operatorname{MID}(2) \leq \operatorname{RIGHT}(2)$.

Circle one:
ALWAYS
SOMETIMES
NEVER
Solution: Since $E^{\prime}(x)>0$ and $E^{\prime \prime}(x)<0$, then $E(x)$ is always increasing and concave down on $[-1,1]$, so both $\operatorname{RIGHT}(2)$ and $\operatorname{MID}(2)$ are overestimates of $\int_{-1}^{1} E(x) d x$. Moreover, $E(x)$ always increasing implies that $\operatorname{MID}(2)$ is a better approximation of the integral than RIGHT(2). More specifically, we note that

$$
\operatorname{MID}(2)=E\left(-\frac{1}{2}\right)+E\left(\frac{1}{2}\right) \quad \text { and } \quad \operatorname{RIGHT}(2)=E(0)+E(1)
$$

and since $E(x)$ is always increasing, then $E\left(-\frac{1}{2}\right) \leq E(0)$ and $E\left(\frac{1}{2}\right) \leq E(1)$, so therefore

$$
\operatorname{MID}(2)=E\left(-\frac{1}{2}\right)+E\left(\frac{1}{2}\right) \leq E(0)+E(1)=\operatorname{RIGHT}(2)
$$

f. [1 point] If $F(x)$ is not constant, then $\operatorname{RIGHT}(3)$ approximates the integral $\int_{-1}^{1} F(x) d x$ more accurately than $\operatorname{RIGHT}(2)$.

Circle one:

ALWAYS

SOMETIMES
NEVER
Solution: If $F(x)=x$, then $\operatorname{RIGHT}(2)=1$ and $\operatorname{RIGHT}(3)=\frac{2}{3}$, while $\int_{-1}^{1} F(x) d x=0$, so $\operatorname{RIGHT}(3)$ is a more accurate estimate than $\operatorname{RIGHT}(2)$. On the other hand, consider the function

$$
F(x)= \begin{cases}1 & x \leq 0 \\ 1-6(3 x)^{5}+15(3 x)^{4}-10(3 x)^{3} & 0<x<\frac{1}{3} \\ 0 & x \geq \frac{1}{3}\end{cases}
$$

(Draw a picture!) By direct computation, $\operatorname{RIGHT}(2)=1$ and $\operatorname{RIGHT}(3)=\frac{2}{3}$, but $\int_{-1}^{1} F(x) d x>1$, so RIGHT(2) is a more accurate estimate than RIGHT(3) in this case. (Note that this shows the statement can be false even if $F(x)$ never increases.)

