4. (15 points) Circle "True" or "False" for each of the following statements. Circle "True" only if the statement is always true. No explanation is necessary.

(a) If \(\lim_{n \to \infty} a_n = 0 \), then \(\sum_{n=0}^{\infty} a_n \) converges.

 True. False.

(b) If \(0 \leq a_n \leq b_n \) for all \(n \), and if \(\sum_{n=1}^{\infty} a_n \) diverges, then \(\sum_{n=1}^{\infty} b_n \) diverges.

 True. False.

(c) If \(P_4(x) = 5 + 6(x - a) + 2(x - a)^2 + 37(x - a)^3 + 21(x - a)^4 \) is the 4th degree Taylor polynomial for \(f(x) \) about \(x = a \), then \(f^{(3)}(a) = 37 \).

 True. False.

(d) If the power series \(\sum_{n=0}^{\infty} C_n(x - 3)^n \) converges for \(x = 1 \), then it also converges for \(x = 4 \).

 True. False.

(e) The infinite series \(\sum_{n=1}^{\infty} \frac{3n^2+n}{n^5+3} \) converges.

 True. False.

5. (5 points) Express the number \(x \) whose repeating decimal expansion is \(6.17636363636363... \) as the sum of an infinite series.