5. (10 points)
(a) Find the second order Taylor polynomial of the function $f(x)=\sqrt{4+x}$ for x near 0 . You must show the calculations that lead to your answer.

We will need two derivatives of $f(x)$. It's not hard to compute $f^{\prime}(x)=\frac{1}{2}(x+4)^{-1 / 2}$, and $f^{\prime \prime}(x)=-\frac{1}{4}(x+4)^{-3 / 2}$. Hence $f^{\prime}(0)=1 / 4$ and $f^{\prime \prime}(0)=-1 / 32$. Since in addition $f(0)=2$, we obtain the second-order Taylor polynomial for $f(x)$ near $x=0$:

$$
P_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}=\mathbf{2}+\frac{\mathbf{x}}{\mathbf{4}}-\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{6 4}} .
$$

(b) What is the Taylor series about $x=0$ of the function $\sin x$? No explanation required.

This series is well-known. Near $x=0$, we have

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} .
$$

(c) Using your answers to parts (a) and (b) and without computing any derivatives, find the second order Taylor polynomial that approximates $g(x)=\sqrt{4+\sin (2 x)}$ for x near 0 . Show your work.

Of course, there's no need to differentiate $g(x)$ to derive the polynomial. Indeed, observe that $g(x)=f(\sin (2 x))$; so we can make use of our answers to parts (a) and (b).
From part (b), we see that $\sin (2 x) \approx 2 x$ for x near 0 . Thus, for small values of x, the function $\sin (2 x)$ has values near zero. Thus, from part (a), we deduce:

$$
g(x) \approx P_{2}(\sin (2 x))=2+\frac{\sin (2 x)}{4}-\frac{\sin ^{2}(2 x)}{64} .
$$

Next, from part (b), we get:

$$
\sin (2 x) \approx 2 x-\frac{(2 x)^{3}}{3!}
$$

Substituting this in the approximation we found for $g(x)$ gives us:

$$
g(x) \approx 2+\frac{2 x-8 x^{3} / 3!}{4}-\frac{\left(2 x-8 x^{3} / 3!\right)^{2}}{64}
$$

To finish the work, there remains to truncate the latter to second order. Hence we obtain:

$$
g(x) \approx 2+\frac{2 x}{4}-\frac{(2 x)^{2}}{64}=\mathbf{2}+\frac{\mathbf{x}}{\mathbf{2}}-\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{1 6}},
$$

which is the desired second-order Taylor polynomial near $x=0$ for the function $g(x)$.

