- 1. (12 points) Let $f(x) = 2e^{x/2}$.
 - (a) (4 pts.) Find $P_2(x)$, the Taylor polynomial for f(x) of degree 2 centered at x = 1.

So

$$P_2(x) = e^{1/2} \left(2 + (x-1) + \frac{1}{4}(x-1)^2 \right)$$

$$\approx 3.2974 + 1.6487(x-1) + 0.4122(x-1)^2.$$

(b) (3 pts.) Graph the functions f(x) and $P_2(x)$ for $0 \le x \le 2$ on the same set of axes. Label each function clearly.

- (c) (2 pts.) Use the polynomial $P_2(x)$ that you wrote in part (a) to estimate f(0.1) and f(1.1).
 - $P_2(0.1) = 2.1475$ $P_2(1.1) = 3.4664$
- (d) (3 pts.) Briefly demonstrate which of the previous two approximations is more accurate.

Compare the approximations with the actual values of f(x):

x	$P_2(x)$	f(x)
0.1	2.1475	2.1025
1.1	3.4664	3.4665

Clearly $P_2(1.1)$ is closer to f(1.1) than $P_2(0.1)$ is to f(0.1). That is, the approximation at x = 1.1 is more accurate than the approximation at x = 0.1. That's as expected: the approximation should be better nearer to x = 1, since the polynomial is expanded about that point.