2. (12 points) Problems (a) and (b) below are independent of each other.
(a) (6 pts.) Consider the following statement: "If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges." Is the statement true or false?

True False
If you said "true," give a step-by-step argument that shows the statement is always true. If you said "false," then write down a specific series for which the statement is false (you must give an explicit formula).

$$
\sum_{n=1}^{\infty} \frac{1}{n} \quad \text { (Note: } 1 / n \rightarrow 0 \text { as } n \rightarrow \infty, \text { yet this series diverges by the integral test.) }
$$

(b) (6 pts.) Consider the following statement: "The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges." Is the statement true or false?
True False

Give a step-by-step argument to justify your answer.

This is an alternating series. Since

$$
0<1 /(n+1)<1 / n, \quad \text { and } \quad \lim _{n \rightarrow \infty}(1 / n)=0
$$

the given series converges by the alternating series test.

