3. (14 points) Please note that the two parts of this problem involve different power series.

(a)
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(8 pts.) Use the ratio test to find the radius of convergence, R, for the series
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Show step-by-step work.
We use the ratio test. We have
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the radius of convergence is R = oo. That is, this series converges for all z in (—o0, 00).

(6 pts.) The power series
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has a radius of convergence R = 2 (so we know that this series converges at least on the open
interval (—1,3).) Find the interval of convergence for this series. Show step-by-step work.

To find the interval of convergence we test the endpoints of the open interval of convergence.
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which converges by the alternating series test (or by the fact that the series of absolute

values, namely > 1/n% converges by the integral test.)
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So the interval of convergence is [—1, 3].

NOTE: observe that in its current form, this series is undefined at n = 0. If you noticed
so explicitly in the exam and solved the problem accordingly, you received the appropriate
credit. The solution just described is correct if the series started at, n = 1 for instance.
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