- 8. (3 points each) Multiple choice. Circle the correct answer to each one of the following questions. (No partial credit!)
 - (a) Suppose that the power series $\sum c_n x^n$ converges for x=-3 and diverges for x=8. Then, which of the following claims are necessarily true?
 - (I) Its radius of convergence could be π .
 - (II) The series must diverge at x = -8.
 - (III) The series must converge at x = 3.
 - (IV) The series must diverge at x = 9.
 - Statements (I), (III) and (IV) only. (A)
- (B) Statements (I) and (IV) only.
- (C) Statements (III) and (IV) only.
- (D)All statements are true.
- (b) Assume $\lim_{n\to\infty} S_n = \sqrt{2(0.1)}/(1-(0.1))$, where $S_1, S_2, \cdots, S_n, \cdots$ is the sequence of partial sums for a geometric series. Then, which of the following claims are necessarily true?
 - (I) The geometric series just mentioned converges.
 - (II) The first term of the geometric series just mentioned must be the number 0.1.
 - (III) The geometric series just mentioned could have the form $\sum_{n=0}^{\infty} \sqrt{2(0.1)} \ 0.1^n$.
 - (IV) The geometric series just mentioned may diverge or converge; it cannot be determined.
 - (A) Statements (III) and (IV) only.
- (B) Statements (I) and (II) only.

(C) Statements (I) and (III) only.

- (D) Statements (II) and (IV) only.
- (c) Consider the following sequences. Assume a and r are positive constants.
 - (I) $S_n = (-1)^n \cos(n\pi)$, (II) $S_n = ar^n$,
- (III) $S_n = \frac{1}{\ln(5^n) + 1,000,000}$.

What can you say about the convergence or divergence of each of the above?

- (A) They all converge.
- (B) Sequence (I) converges, sequence (II) may diverge or converge, and (III) diverges.
- (C) Sequence (I) converges, sequence (II) converges sometimes, and (III) converges to 0.
- (D) Sequence (I) diverges, sequence (II) converges as long as $|r| \le 1$, and (III) converges to 0.