1. [14 points] Indicate if each of the following is true or false by circling the correct answer. Justify your answer.

 a. [2 points] If \(\int_{0}^{\infty} f(x)dx \) is divergent then \(\int_{1}^{\infty} f(x)dx \) is also divergent.

 True \hspace{1cm} False

 b. [2 points] If the median of a density function \(p(t) \) is 0, then \(p(t) \) is an even function.

 True \hspace{1cm} False

 c. [4 points] A curve is parametrized by the functions \(x(t) = 1 - t^2 \) and \(y(t) = t^4 + 3t^2 \) for \(0 \leq t \leq 1 \). The concavity of the graph of the parametric curve is positive for \(0 < t < 1 \).

 True \hspace{1cm} False

 d. [2 points] In polar coordinates, the coordinates \((2, \frac{\pi}{3})\) and \((-2, -\frac{7\pi}{3})\) represent the same point.

 True \hspace{1cm} False

 e. [2 points] If \(P(t) \) is a cumulative distribution function then \(\int_{-\infty}^{\infty} P(t)dt \) converges.

 True \hspace{1cm} False

 f. [2 points] The solutions to the differential equation \(\frac{dy}{dx} = 1 + y^2 + 3x^2 \) are increasing at every point.

 True \hspace{1cm} False