1. [14 points] Indicate if each of the following is true or false by circling the correct answer. Justify your answer.
a. [2 points] If $\int_{0}^{\infty} f(x) d x$ is divergent then $\int_{1}^{\infty} f(x) d x$ is also divergent.

True
False
Solution: $\quad \int_{1}^{\infty} f(x) d x$ can be convergent while $\int_{0}^{1} f(x) d x$ is divergent. Example $f(x)=$ $\frac{1}{x^{2}}$.
b. [2 points] If the median of a density function $p(t)$ is 0 , then $p(t)$ is an even function.

True False
Solution: Example: $p(x)=\left\{\begin{array}{ll}.5 & -1 \leq x \leq 0 \\ .25 & 0<x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$ has median 0 but it is not symmetric around the y axis.
c. [4 points] A curve is parametrized by the functions $x(t)=1-t^{2}$ and $y(t)=t^{4}+3 t^{2}$ for $0 \leq t \leq 1$. The concavity of the graph of the parametric curve is positive for $0<t<1$.
True

False
Solution:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\left(\frac{y^{\prime}}{x^{\prime}}\right)^{\prime}}{x^{\prime}}=\frac{\left(\frac{4 t^{3}+6 t}{-2 t}\right)^{\prime}}{-2 t}=\frac{\left(-2 t^{2}-3\right)^{\prime}}{-2 t}=\frac{-4 t}{-2 t}=2
$$

d. [2 points] In polar coordinates, the coordinates $\left(2, \frac{\pi}{3}\right)$ and $\left(-2, \frac{7 \pi}{3}\right)$ represent the same point.
True

False
Solution: $\left(2, \frac{\pi}{3}\right)$ is in quadrant I and $\left(-2, \frac{7 \pi}{3}\right)$ is in quadrant III
e. [2 points] If $P(t)$ is a cumulative distribution function then $\int_{-\infty}^{\infty} P(t) d t$ converges.

True
False
Solution: $\quad P(t)$ is an increasing functions and $\lim _{t \rightarrow \infty} P(t)=1$ hence $\int_{-\infty}^{\infty} P(t) d t$ diverges.
f. [2 points] The solutions to the differential equation $\frac{d y}{d x}=1+y^{2}+3 x^{2}$ are increasing at every point.

> True

False
Solution: $y^{\prime}=1+y^{2}+3 x^{2}>0$ hence y is an increasing function.

