
2. [14 points] The graph of the circle r=4 and and the cardioid $r=2\sin\theta-2$ are shown below.

a. [3 points] Write a formula for the area inside the circle and outside the cardioid in the first quadrant.

Solution: Area of the quarter of a circle= 4π Area of cardioid= $\int_{\pi}^{\frac{3\pi}{2}} \frac{1}{2} (2\sin\theta - 2)^2 d\theta$

Area= $4\pi - \int_{\pi}^{\frac{3\pi}{2}} \frac{1}{2} (2\sin\theta - 2)^2 d\theta$

b. [7 points] At what angles $0 \le \theta < 2\pi$ is the minimum value of the y coordinate on the cardioid attained? No credit will be given for answers without proper mathematical justification.

Solution:

$$y(\theta) = (2\sin\theta - 2)\sin\theta$$

 $y'(\theta) = 2\cos\theta\sin\theta + (2\sin\theta - 2)\cos\theta = 4\cos\theta\sin\theta - 2\cos\theta$

Critical points $(4\sin\theta - 2)\cos\theta = 0$

 $\cos \theta = 0$ or $\sin \theta = \frac{1}{2}$ then $\theta = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$. Minimum y coordinate at $\theta = \frac{\pi}{6}, \frac{5\pi}{6}$.

c. [4 points] Write an integral that computes the value of the length of the piece of the cardioid lying below the x-axis.

Solution:

$$x(\theta) = (2\sin\theta - 2)\cos\theta$$
 $x'(\theta) = 2\cos^2\theta - (2\sin\theta - 2)\sin\theta$

 $L = \int_0^{\pi} \sqrt{(2\cos^2\theta - (2\sin\theta - 2)\sin\theta)^2 + (4\cos\theta\sin\theta - 2\cos\theta)^2} d\theta$