3. [13 points]

The phones offered by a cell phone company have some chance of failure after they are activated. Suppose that the density function \(p(t) \) describing the time \(t \) in years that one of their phones will fail is

\[
p(t) = \begin{cases}
\lambda e^{-\lambda t} & \text{for } t \geq 0, \\
0 & \text{otherwise}
\end{cases}
\]

a. [5 points] Find the cumulative distribution function \(P(t) \) of \(p(t) \).

Solution:

\[
P(t) = \int_0^t \lambda e^{-\lambda t} dt = -e^{-\lambda t} \bigg|_0^t = 1 - e^{-\lambda t}
\]

\[
P(t) = \begin{cases}
1 - e^{-\lambda t} & \text{for } t \geq 0, \\
0 & \text{otherwise}
\end{cases}
\]

b. [4 points] If the probability of a cell phone failing within a year and a half is \(\frac{2}{5} \), find the value of \(\lambda \).

Solution:

\[
\int_0^{1.5} \lambda e^{-\lambda t} dt = 1 - e^{-1.5\lambda}
\]

\[
1 - e^{-1.5\lambda} = \frac{2}{5} \quad \text{then} \quad \lambda = -\frac{\ln(\frac{2}{5})}{1.5} = .34
\]

c. [4 points] The cell phone company offers its clients a replacement phone after two years if they sign a new contract. What is the probability that the client will not have to replace his or her phone before the company will give him or her a new one?

Solution:

\[
\int_2^\infty \lambda e^{-\lambda t} dt = \lim_{b \to \infty} -e^{-\lambda t} \bigg|_2^b = \lim_{b \to \infty} e^{-.68} - e^{-.34b} = e^{-.68} = .506
\]

or

\[
1 - P(2) = e^{-.68} = 506.
\]