1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] The function $y(t)=\cos 3 t+B \sin 3 t+\frac{1}{9} t$ is a solution of $y^{\prime \prime}+9 y=0$ with $y(0)=1$.

True False
b. [2 points] The value of the integral used to compute the area enclosed by a curve $r=f(\theta)$ given in polar coordinates can be negative if $f(\theta) \leq 0$.

True False
c. [2 points] If $f(x)$ is a continuous function such that $\int_{1}^{\infty} f(x) d x$ diverges, then $\int_{1}^{\infty} f(x)^{2} d x$ must diverge.
d. [2 points] If $P(x)$ is a cumulative distribution function for the probability density function $p(x)$, then $1+P(x)$ is also a cumulative distribution function for $p(x)$.

True
False
e. [2 points] All solutions to the differential equation $y^{\prime}=1+y^{4}$ are increasing functions.

$$
\text { True } \quad \text { False }
$$

f. [2 points] Let $P(t)$ be the cumulative distribution function of a probability density function $p(t)$. If $P(0)=\frac{2}{3}$ then the median of $p(t)$ is negative.

True
False

