7. [13 points] A company designs an air filter for a ship’s engine room that reduces the amount of fumes in the air by \(k \) percent every hour. The machinery in the engine room produces fumes at a rate of 0.02 kilograms per hour. Let \(Q(t) \) be the amount in kilograms of fumes in the room \(t \) hours after the engines are activated. Hence \(Q \) satisfies

\[
\frac{dQ}{dt} = 0.02 - \frac{k}{100}Q.
\]

a. [9 points] Find a formula for \(Q(t) \). Suppose there are no fumes in the air when the engines are activated.

b. [2 points] What is the value of \(Q(t) \) in the long run?

c. [2 points] Air safety regulations require that the concentration of fumes in the air not exceed \(10^{-4} \) kilograms per liter at any time. If the volume of air in the engine room is \(10^3 \) liters, for what values of \(k \) are the safety regulations met at all times?