- **1**. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
 - **a.** [2 points] The function $y(t) = \cos 3t + B \sin 3t + \frac{1}{9}t$ is a solution of y'' + 9y = 0 with y(0) = 1.

Solution:
$$y'' = -9\cos 3t - 9B\sin 3t$$
 $9y = 9\cos 3t + 9B\sin 3t + t$
Hence $y'' + 9y = t \neq 0$.

b. [2 points] The value of the integral used to compute the area enclosed by a curve $r = f(\theta)$ given in polar coordinates can be negative if $f(\theta) \leq 0$.

Solution:
$$f(\theta)^2 \ge 0$$
, then $A = \int_a^b \frac{1}{2} f(\theta)^2 d\theta \ge 0$.

c. [2 points] If f(x) is a continuous function such that $\int_1^{\infty} f(x) dx$ diverges, then $\int_1^{\infty} f(x)^2 dx$ must diverge.

Solution: If $f(x) = \frac{1}{x}$, then $\int_1^\infty \frac{1}{x} dx$ diverges but $\int_1^\infty \frac{1}{x^2} dx$ converges.

d. [2 points] If P(x) is a cumulative distribution function for the probability density function p(x), then 1 + P(x) is also a cumulative distribution function for p(x).

Solution: A cumulative distribution function P(x) must satisfy $\lim_{x\to\infty} P(x) = 1$, but $\lim_{x\to\infty} 1 + P(x) = 2 \neq 1$. Hence 1 + P(x) can't be a cumulative distribution.

e. [2 points] All solutions to the differential equation $y' = 1 + y^4$ are increasing functions.

Solution: Since $1 + y^4 > 0$, then y' > 0. Then all the solution curves y must be increasing.

f. [2 points] Let P(t) be the cumulative distribution function of a probability density function p(t). If $P(0) = \frac{2}{3}$ then the median of p(t) is negative.

False

Solution: If T is the median of
$$p(t)$$
, then $P(T) = \frac{1}{2}$. Since $P(0) = \frac{2}{3} > \frac{1}{2}$, then $T < 0$.

True False

False

False

False

True

True

True

True