- 8. [10 points] For $\alpha > 0$, consider the family of spirals given by $r = \frac{1}{\theta^{\alpha}}$ in polar coordinates.
 - a. [2 points] Write down an integral that gives the length L of a spiral in this family for $1 \le \theta \le b$. No credit will be given if you just write down the formula given in part (b).

Solution: Using parametric equations: $x = \frac{1}{\theta^{\alpha}} \cos \alpha$ and $y = \frac{1}{\theta^{\alpha}} \sin \alpha$.

$$L = \int_{1}^{b} \sqrt{\left(-\frac{\alpha}{\theta^{\alpha+1}}\cos\theta - \frac{1}{\theta^{\alpha}}\sin\theta\right)^{2} + \left(-\frac{\alpha}{\theta^{\alpha+1}}\sin\theta + \frac{1}{\theta^{\alpha}}\cos\theta\right)^{2}}d\theta$$

or

$$L = \int_{1}^{b} \sqrt{\left(\frac{1}{\theta^{\alpha}}\right)^{2} + \left(-\frac{\alpha}{\theta^{\alpha+1}}\right)^{2}} d\theta$$

b. [8 points] It can be shown that the length L of the spiral in part a) may also be written as

$$L = \int_{1}^{b} \frac{1}{\theta^{\alpha}} \sqrt{1 + \frac{\alpha^{2}}{\theta^{2}}} d\theta.$$

Use this formula for L to find all values of $\alpha > 0$ for which the length of the spiral is infinite for $1 \le \theta$. For which values of α is the length finite? Justify all your answers using the comparison test.

Solution:

$$\int_{1}^{\infty} \frac{1}{\theta^{\alpha}} \sqrt{1 + \frac{\alpha^{2}}{\theta^{2}}} d\theta \quad \text{behaves as} \quad \int_{1}^{\infty} \frac{1}{\theta^{\alpha}} d\theta$$

Since

$$\int_{1}^{\infty} \frac{1}{\theta^{\alpha}} d\theta \le \int_{1}^{\infty} \frac{1}{\theta^{\alpha}} \sqrt{1 + \frac{\alpha^{2}}{\theta^{2}}} d\theta$$

then arc length is infinite of $\alpha \leq 1$.

$$\int_{1}^{\infty} \frac{1}{\theta^{\alpha}} \sqrt{1 + \frac{\alpha^{2}}{\theta^{2}}} d\theta \leq \int_{1}^{\infty} \frac{1}{\theta^{\alpha}} \sqrt{1 + \alpha^{2}} d\theta = \sqrt{1 + \alpha^{2}} \int_{1}^{\infty} \frac{1}{\theta^{\alpha}} d\theta$$

Hence the arc length is finite of $\alpha > 1$.