1. [8 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] The function $y(t)=\cos (4 t)$ is a solution to the differential equation $y^{\prime \prime}+16 y=0$.
True
False

Solution: $y^{\prime}=-4 \sin (4 t)$ and $y^{\prime \prime}=-16 \cos (4 t)$.
Hence $y^{\prime \prime}+16 y=-16 \cos (4 t)+16 \cos (4 t)=0$.
b. [2 points $] \int_{1}^{2} \tan x d x$ is an improper integral.

True False
Solution: The function $y=\tan (x)$ has a vertical asymptote at $x=\frac{\pi}{2} \approx 1.5708$ which lies inside the interval $[1,2]$. Hence $\int_{1}^{2} \tan x d x$ is improper.
c. [2 points] If $r=f(\theta)$ is a function in polar coordinates with $f^{\prime \prime}(\theta)>0$, then its graph in the $x-y$ plane is concave up.

Solution: Consider $f(\theta)=e^{-\theta}$, then $f^{\prime \prime}(\theta)=e^{-\theta}>0$ for all θ, but its graph is not concave up for all θ.
d. [2 points] The median of the probability density function

$$
p(x)= \begin{cases}\frac{1}{x^{2}} & x \geq 1 \\ 0 & x<1 .\end{cases}
$$

is equal to 2 .

> True

False
Solution: Since

$$
\int_{-\infty}^{2} p(t) d t=\int_{1}^{2} \frac{1}{x^{2}} d x=-\left.\frac{1}{x}\right|_{1} ^{2}=-\frac{1}{2}+1=\frac{1}{2} .
$$

Hence 2 is the median of this distribution.

