3. [14 points] The x and y positions of two birds in flight, Bird I and Bird II, are graphed below as functions of time t (see figures labeled Bird I and Bird II on the left). To the right, there are four parametric curves, A,B,C,D, showing flight paths of several birds in the $x-y$ plane.
Bird I
a. [2 points] Is the horizontal velocity of bird I zero at any time $0<t<1$? If so, give an approximate t value.
b. [2 points] Based on the plots shown for bird II, consider a parametric curve for the flight path for bird II in the $x-y$ plane. Would the slope of the tangent line to the flight path curve at time $t=0.9$ be positive, negative, or zero? Justify.
c. [4 points] One of the parametric curves A,B,C,D corresponds to bird I and another corresponds to bird II. Indicate which ones by circling the correct answers:

Bird I corresponds to:	A	B	C	D
Bird II corresponds to:	A	B	C	D

d. [6 points] A third bird flies according to the following parametric equations

$$
x(t)=1-t^{3} \quad y(t)=t^{2}-t .
$$

1. Find the time(s) at which the bird is flying straight horizontally right or left. Show all your work.
2. Find the speed of the bird at $t=1$. Show all your work.
