1. [10 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] If $r=f(\theta)$ is a polar curve and is concave down, then $f^{\prime \prime}(\theta)<0$.

True
False
Solution: The function $f(\theta)=1$ is concave down for $0<\theta<\pi$, but $f^{\prime \prime}(\theta)=0$.
b. [2 points] Let $y=f(x)$ be a solution of the differential equation $y^{\prime}=g(x)$ where $g(x)$ is an increasing function. Then the graph of $f(x)$ is concave up.

True False
Solution: Since $y^{\prime \prime}=g^{\prime}(x)>0$, then $f(x)$ is concave up.
c. [2 points] The function $x(t)=e^{-3 t}+2 t^{2}+\frac{4}{9}$ is a solution to $x^{\prime \prime}=9 x-18 t^{2}$.

True
False
Solution: $\quad x^{\prime \prime}=9 e^{-3 t}+4$ and $9 x-18 t^{2}=9\left(e^{-3 t}+2 t^{2}+\frac{4}{9}\right)-18 t^{2}=9 e^{-3 t}+4$. Hence $x^{\prime \prime}=9 x-18 t^{2}$.
d. [2 points] If $\int_{0}^{\infty} f(x) d x$ and $\int_{0}^{\infty} g(x) d x$ both diverge, then $\int_{0}^{\infty} f(x) g(x) d x$ diverges.

> True

False

$$
\begin{aligned}
& \text { Solution: If } f(x)=g(x)=\frac{1}{x+1} \text {, then } \\
& \int_{0}^{\infty} f(x) d x=\int_{0}^{\infty} g(x) d x=\int_{0}^{\infty} \frac{1}{x+1} d x=\lim _{b \rightarrow \infty} \ln |x+1|_{0}^{b}=\infty \text { (diverges), but } \\
& \int_{0}^{\infty} f(x) g(x) d x=\int_{0}^{\infty} \frac{1}{(1+x)^{2}} d x=\lim _{b \rightarrow \infty}-\left.\frac{1}{1+x}\right|_{0} ^{b}=1 \text { (converges). }
\end{aligned}
$$

e. [2 points] If $k>0$ is a constant, then on the interval $a \leq t \leq b$, the arclength of the parametric curve $x=k f(t), y=k g(t)$ is k times the arclength of $x=f(t), y=g(t)$.

$$
\text { Solution: } \int_{a}^{b} \sqrt{\left(\frac{d(k f(t))}{d t}\right)^{2}+\left(\frac{d(k g(t))}{d t}\right)^{2}} d t=k \int_{a}^{b} \sqrt{\left(\left(\frac{d(f(t))}{d t}\right)^{2}+\left(\frac{d(g(t))}{d t}\right)^{2}\right)} d t
$$

