6. [10 points] Match the following. For each blank, there is only one correct answer.

a. [4 points] For each slope field on the left, write the letter corresponding to the differential equation that generates that slope field in the blank provided.

\[\frac{dy}{dx} = (y + 2)(y - 1) \]
(A.)

\[\frac{dy}{dx} = (y - 2)(y + 1) \]
(B.)

\[\frac{dy}{dx} = (y + 1)(y - 2)^2 \]
(C.)

\[\frac{dy}{dx} = (2 - x)(y + 1) \]
(D.)

\[\frac{dy}{dx} = (x - 2)(y + 1) \]
(E.)

\[\frac{dy}{dx} = (x - 1)(y - 2) \]
(F.)

b. [6 points] Let \(r(\theta) = k \) be a polar curve where \(k > 0 \) is a constant. Match the quantities on the left with their formulas (in terms of \(\theta \)) on the right.

I. \(\frac{dy}{d\theta} = \)
(A.) \(k \cos(\theta) \)
(B.) \(-k \cos(\theta) \)
(C.) \(k \sin(\theta) \)

II. \(\frac{dx}{d\theta} = \)
(D.) \(-k \sin(\theta) \)
(E.) \(\tan(\theta) \)
(F.) \(-\tan(\theta) \)

III. \(\frac{dy}{dx} = \)
(G.) \(\frac{1}{\tan(\theta)} \)
(H.) \(-\frac{1}{\tan(\theta)} \)