9. [10 points] Suppose that f is function with the following properties:

$$f$$
 is differentiable $f(x) > 0$ for all x
$$\int_{1}^{\infty} f(x) dx \text{ converges.}$$

For each of the following parts, determine whether the statement is always, sometimes, or never true by circling the appropriate answer. No justification is needed.

a. [2 points]
$$\int_{500}^{\infty} 1000 f(x) dx$$
 converges.

ALWAYS SOMETIMES NEVER

b. [2 points]
$$\int_1^\infty (f(x))^{2/3} dx$$
 converges.

ALWAYS SOMETIMES NEVER

c. [2 points]
$$\int_1^\infty (f(x))^{3/2} dx$$
 converges.

SOMETIMES ALWAYS **NEVER**

d. [2 points]
$$\int_0^1 f\left(\frac{1}{x}\right) dx$$
 converges.

ALWAYS SOMETIMES NEVER

e. [2 points]
$$\int_{1}^{\infty} \frac{f'(x)}{f(x)} dx \text{ converges.} \qquad \left(\text{ Note: } \frac{f'(x)}{f(x)} = \frac{d}{dx} \ln(f(x)). \right)$$

ALWAYS SOMETIMES NEVER