- 8. [12 points] For each of the following parts, circle the correct answer. Ambiguous answers will receive no credit. You do **not** need to show your work.
 - **a.** [3 points] For nonzero constants a and b, the curve $r = \frac{a}{\sin(\theta) + b\cos(\theta)}$ is a line. What is the Cartesian equation of the line?

$$\boxed{y = -bx + a} \qquad \qquad y = ax - b \qquad \qquad y = bx - a \qquad \qquad y = -ax + b \qquad \qquad y = -bx - a$$

b. [3 points] Raymond Green left a bowl of ice cream in a 50°C sauna. Over the first 2 ln(2) hours, the ice cream goes from -10° C to 20° C. Which of the following describes the change in Q(t), the temperature of the ice cream in °C after t hours?

$$\frac{dQ}{dt} = \frac{Q - 50}{2} \qquad \qquad \frac{dQ}{dt} = 2(50 - Q) \qquad \qquad \frac{dQ}{dt} = \ln(2)\left(25 - \frac{Q}{2}\right)$$

$$\frac{dQ}{dt} = 25 - \frac{Q}{2} \qquad \qquad \frac{dQ}{dt} = -\frac{1}{2}(Q - 25)$$

c. [3 points] Let $\alpha > 0$ be a constant. What is the value of $\lim_{u \to \infty} \left(\frac{u}{u - \alpha} \right)^{u - \alpha}$?

$$e^{\alpha}$$
 1 DIVERGES $e^{1/\alpha}$ α

d. [3 points] Consider the differential equation $y' = 1 + \beta xy$, where β is a constant, and let y(x) be a solution satisfying y(0) = 1. For which value of β does Euler's method with 2 steps give the estimate $y(4) \approx 0$?

$$-\frac{3}{4}$$
 $-\frac{1}{6}$ $-\frac{5}{12}$ $-\frac{1}{2}$ $-\frac{6}{11}$