1. [12 points] Consider the infinite sequences c_n , d_n , j_n and ℓ_n , defined for $n \ge 1$ as follows:

$$c_n = \sum_{k=1}^n \frac{(-1)^k}{k!}$$

$$d_n = \arctan(1.1^n)$$

$$j_n = \int_0^{n^3} e^{2x} dx$$

$$\ell_n = \sin(x^n) \text{ for some fixed value of } x \text{ satisfying } 0 < x < 1.$$

- **a**. [8 points] Decide whether each of these sequences is bounded, unbounded, always increasing, and/or always decreasing. Record your conclusions by clearly circling the correct descriptions below. Contradictory conclusions will be marked incorrect.
 - i. The sequence c_n is

bounded	unbounded	increasing	decreasing
ii. The sequence d_n is			
bounded	unbounded	increasing	decreasing
iii. The sequence j_n is			
bounded	unbounded	increasing	decreasing
iv. The sequence ℓ_n is			
bounded	unbounded	increasing	decreasing

b. [4 points]

For parts i and ii below, decide whether the sequence converges or diverges.

- If the sequence converges, circle "converges", find the <u>value</u> to which it converges, and write this value on the answer blank provided.
- If the sequence diverges, circle "diverges".
- i. The sequence d_n

Solution: Note that the geometric sequence 1.1^n diverges to ∞ . So since $\lim_{x\to\infty} \arctan(x) = \pi/2$, we have $\lim_{n\to\infty} \arctan(1.1^n) = \pi/2$. That is, the sequence d_n converges to $\pi/2$.

ii. The sequence j_n

Converges to _

Diverges