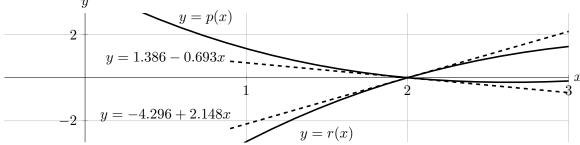
- 1. [11 points] For each of parts a-d below:
  - Find the *exact* value, if possible. Recall that  $x = \sqrt{2}$  is a solution in exact form to the equation  $x^2 = 2$ , but x = 1.41421356237 is <u>not</u>.
  - If the given limit or integral either does not exist or diverges, write "DOES NOT EXIST".
  - If there is not enough information, write "NOT ENOUGH INFO".
  - You do not have to show work, but work shown might be considered for partial credit.
  - **a.** [2 points] Suppose f(x) is a continuous, positive, and decreasing function such that  $\int_{2}^{\infty} f(x) dx$  converges. Find  $\lim_{x \to \infty} f(x)$ .

Answer: 
$$\lim_{x \to \infty} f(x) =$$
\_\_\_\_\_


**b.** [3 points] Find  $\int_0^\infty \frac{1}{x^{0.7}} dx$ .

**Answer:** 
$$\int_0^\infty \frac{1}{x^{0.7}} \, dx =$$
\_\_\_\_\_\_\_

c. [3 points] Suppose  $\mu$  is a real number. Find  $\int_{-\infty}^{\infty} e^{-(x-\mu)^2/0.0002} dx$ . Your answer may involve  $\mu$ .

**Answer:** 
$$\int_{-\infty}^{\infty} e^{-(x-\mu)^2/0.0002} dx =$$
\_\_\_\_\_\_

**d.** [3 points] The graph below shows two functions p(x) and r(x), as well as their tangent lines at x = 2.



Find the value of  $\lim_{x\to 2} \frac{p(x)}{r(x)}$ .

Answer: 
$$\lim_{x\to 2} \frac{p(x)}{r(x)} =$$