- 10. [12 points] Provide an example for each of the following. Note that there $\underline{\text{are}}$ examples in each case.
 - **a.** [3 points] A sequence a_n that is bounded but <u>not</u> monotonic.

Answer: $a_n = \underline{\hspace{1cm}}$

b. [3 points] A sequence b_n such that $\sum_{n=1}^{\infty} b_n$ converges but $\sum_{n=1}^{\infty} b_n^2$ diverges.

Answer: $b_n = \underline{\hspace{1cm}}$

c. [3 points] A sequence c_n and a function g(x) such that $g(n) = c_n$ for all $n \ge 1$, the improper integral $\int_1^\infty g(x) \, dx$ diverges, and the series $\sum_{n=1}^\infty c_n$ converges.

Note: You may describe your function g(x) by giving either a formula or a well-drawn and clearly labeled graph.

Answer: $c_n =$ _____ and g(x) =_____

d. [3 points] A sequence d_n with $d_n \geq 0$ for $n \geq 1$ such that

$$\lim_{n \to \infty} d_n = 0 \quad \text{ and } \quad \sum_{n=1}^{\infty} (-1)^n d_n \text{ diverges.}$$

Hint: Consider defining d_n piecewise, with one formula for when n is odd and one for when n is even.

Answer: $d_n =$