10. [12 points] Provide an example for each of the following. Note that there are examples in each case.

a. [3 points] A sequence a_n that is bounded but not monotonic.

Answer: $a_n =$

b. [3 points] A sequence b_n such that $\sum_{n=1}^{\infty} b_n$ converges but $\sum_{n=1}^{\infty} b_n^2$ diverges.

Answer: $b_n =$

c. [3 points] A sequence c_n and a function $g(x)$ such that $g(n) = c_n$ for all $n \geq 1$, the improper integral $\int_1^{\infty} g(x) \, dx$ diverges, and the series $\sum_{n=1}^{\infty} c_n$ converges.

Note: You may describe your function $g(x)$ by giving either a formula or a well-drawn and clearly labeled graph.

Answer: $c_n =$ and $g(x) =$

d. [3 points] A sequence d_n with $d_n \geq 0$ for $n \geq 1$ such that

$$\lim_{n \to \infty} d_n = 0 \quad \text{and} \quad \sum_{n=1}^{\infty} (-1)^n d_n \text{ diverges.}$$

Hint: Consider defining d_n piecewise, with one formula for when n is odd and one for when n is even.

Answer: $d_n =$