7. [12 points] For each of the questions on this page:

You must circle at least one choice to receive any credit.

No credit will be awarded for unclear markings. No justification is necessary.

For parts **a** - **c** below, circle <u>all</u> of the available correct answers, and circle "NONE OF THESE" if none of the available options are correct.

- **a.** [3 points] Let a_n be a sequence of positive numbers, and let $S_n = a_1 + a_2 + \cdots + a_n$. Suppose $\lim_{n \to \infty} \frac{S_n}{n^2} = 2$. Which of the following <u>must</u> be true?
 - i. The sequence a_n converges.
- ii. The sequence S_n diverges.
- iii. The series $\sum_{n=1}^{\infty} a_n$ converges. iv. The series $\sum_{n=1}^{\infty} S_n$ diverges.
- v. The series $\sum_{n=1}^{\infty} \frac{1}{S_n}$ converges.
- vi. NONE OF THESE
- **b.** [3 points] Which of the following series are conditionally convergent?

i.
$$\sum_{n=1}^{\infty} \left(-\frac{1}{3}\right)^n$$
 ii.
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$
 iii.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$

ii.
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$$

iii.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n!}$$

iv.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$$

iv.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$$
 v.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{4n^3 + 5}$$
 vi. None of these

c. [3 points] Suppose f(x) is a positive, decreasing function on $[0,\infty)$ and suppose $\sum_{n=0}^{\infty} f(n) = 3. \text{ Let } B_n = \int_0^n f(x) \, dx \text{ for } n \ge 0, \text{ . Which of the following } \underline{\text{must}} \text{ be true?}$

i.
$$\lim_{n \to \infty} f(n) = 0$$

ii.
$$\lim_{n \to \infty} f(n) = 3$$

iii.
$$\int_0^\infty f(x) \, dx = 3$$

iii.
$$\int_0^\infty f(x) dx = 3$$
 iv.
$$\sum_{n=0}^\infty (-1)^n f(n)$$
 converges

- v. The sequence B_n is bounded and increasing. vi. None of these