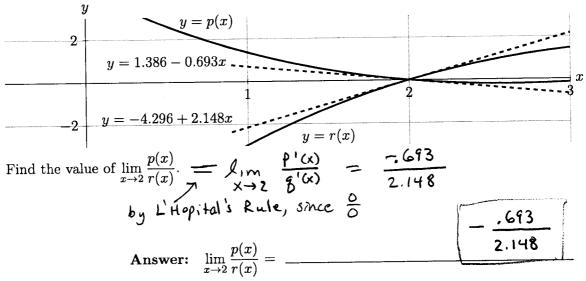
- 1. [11 points] For each of parts **a**-**d** below:
 - Find the *exact* value, if possible. Recall that $x = \sqrt{2}$ is a solution in exact form to the equation $x^2 = 2$, but x = 1.41421356237 is <u>not</u>.
 - If the given limit or integral either does not exist or diverges, write "DOES NOT EXIST".
 - If there is not enough information, write "NOT ENOUGH INFO".
 - You do not have to show work, but work shown might be considered for partial credit.
 - **a**. [2 points] Suppose f(x) is a continuous, positive, and decreasing function such that $\int_{2}^{\infty} f(x) dx$ converges. Find $\lim_{x \to \infty} f(x)$.


Answer:
$$\lim_{x \to \infty} f(x) = \frac{O}{b + 1}$$

b. [3 points] Find $\int_0^\infty \frac{1}{x^{0.7}} dx = \lim_{b \to \infty} \int_0^b x^{-.7} dx = \lim_{b \to \infty} \frac{1}{.3} x^{.3} \Big|_0^b = \lim_{b \to \infty} \frac{b^{-.0}}{.3}$
 $= \infty$

Answer:
$$\int_0^\infty \frac{1}{x^{0.7}} dx =$$
 DOES NOT EXIST

c. [3 points] Suppose μ is a real number. Find $\int_{-\infty}^{\infty} e^{-(x-\mu)^2/0.0002} dx$. Your answer may involve μ .

$$\frac{-(x-\mu)^{2}}{0.002} = -\frac{(x-\mu)^{2}}{\frac{2}{1000}} = -\frac{1}{2}(100)^{2}(x-\mu)^{2} = -\frac{1}{2}(100x-100\mu).$$
Answer:
$$\int_{-\infty}^{\infty} e^{-(x-\mu)^{2}/0.0002} dx = \frac{\int_{-\infty}^{\infty} e^{-\frac{1}{2}w^{2}} \cdot \frac{1}{100}}{\frac{1}{100}} = \sqrt{\frac{2\pi}{100}}$$

d. [3 points] The graph below shows two functions p(x) and r(x), as well as their tangent lines at x = 2.

