- 10. [12 points] Provide an example for each of the following. Note that there <u>are</u> examples in each case.
 - **a**. [3 points] A sequence a_n that is bounded but <u>not</u> monotonic.

Answer:
$$a_n = \frac{(-1)^n}{(-1)^n}$$

b. [3 points] A sequence b_n such that $\sum_{n=1}^{\infty} b_n$ converges but $\sum_{n=1}^{\infty} b_n^2$ diverges.
Answer: $b_n = \frac{(-1)^n}{\sqrt{n}}$
c. [3 points] A sequence c_n and a function $g(x)$ such that $g(n) = c_n$ for all $n \ge 1$, the
improper integral $\int_1^{\infty} g(x) dx$ diverges, and the series $\sum_{n=1}^{\infty} c_n$ converges.
Note: You may describe your function $g(x)$ by giving either a formula or a well-drawn
and clearly labeled graph.
Must Violate one of the conditions of the
integral test, so either not positive or not decreasing.
Answer: $c_n = _$ _____ and $g(x) = _$ $\sum_{n=1}^{\infty} (\pi \times)$

d. [3 points] A sequence d_n with $d_n \ge 0$ for $n \ge 1$ such that

$$\lim_{n \to \infty} d_n = 0$$
 and $\sum_{n=1}^{\infty} (-1)^n d_n$ diverges.

Hint: Consider defining d_n piecewise, with one formula for when n is odd and one for when n is even.

Since AST doesn't apply even though terms alternate
and -30, must be the case that terms don't
decrease in magnitude.
Answer:
$$d_n = \begin{cases} 2/n & \text{if } n \text{ is even} \\ 0 & \text{if } n \text{ is odd} \end{cases}$$

 $\sum_{i=1}^{n} (-i)^n d_n = -0 + \frac{2}{2} - 0 + \frac{2}{4} - 0 + \frac{2}{6} - \dots = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

50