2. [9 points] Note: "Closed form" here means that the expression should NOT include sigma notation or ellipses (...) and should NOT be recursive.

Michel is studying how the mass of a certain collection of bacterial cells behaves in the presence of a parasite. He notices that from noon to midnight of each day, the parasite eats 60% of the mass of the bacterial cells. Then the parasite sleeps until noon the next day. While the parasite sleeps, the remaining 40% of the collection of bacterial cells doubles in mass.

At noon on the first day, the mass of the collection of bacterial cells is 100 grams.

a. [3 points] Let X_n be the mass, in grams, of bacterial cells present at noon on day n. Note that $X_1 = 100$. Calculate X_2 and X_3 , and find a closed form expression for X_n .

n	x^	Uneater	After regrowth
1	100	(.4)(100)	2(.4)(100) = 80 = (8)(100)
2	80	(,4)(80)	$2(.4)(80) = 64 = (.8)^{2}(100)$
3	64		
		Answer: $X_2 = $	
			Answer: $X_n = \frac{loo(.8)^{n-l}}{d}$

b. [4 points] Let K_n be the <u>total</u> mass, in grams, of bacterial cells that the parasite has consumed in the first n days. For example, on day 1 the parasite consumes 60% of 100 grams, which is 60 grams, so $K_1 = 60$. Calculate K_2 and K_3 , and find a closed form expression for K_n .

1 60 expression for
$$K_n$$
.
2 $60 + (.6)(80)$ Amount eaten on day i is $(.6) \times i = (.6) (100)(.8)^{i-1} = 60(.8)^{i-1}$
= 108 so $K_n = \sum_{i=1}^{n} 60(.8)^{i-1} = 60(1 + (.8) + (.8)^{n-1} + (.8)^{n-1}) = 60 \frac{1 - (.8)^{n}}{1 - .8}$
= $108 + (.6)(64)$ = $\frac{60}{.2}(1 - (.8)^{n}) = 300(1 - (.8)^{n})$

Answer:
$$K_2 = \frac{108 \text{ a}}{300 (1 - (.8)^n)}$$
 and $K_3 = \frac{146.4 \text{ a}}{300 (1 - (.8)^n)}$

c. [2 points] If this continued forever, how many grams of bacterial cells would the parasite eventually eat?

$$\lim_{n\to\infty} 300 (1-(18)^n) = 300$$

Answer:
$$Mass =$$