9. [9 points]

A small pond has murky water, and needs to be completely drained.

- A side view of the pond looks like the diagram at right.
- y measures the distance, in meters, above the bottom of the pond.
- The surface of the pond is at $y=4$.
- The water must be pumped to a height 1 meter above the surface.
- The cross-sections perpendicular to the y-axis are circles.
- The radius of the circular cross-section
 y meters above the bottom of the pond is $r(y)$ meters.
- The density of the murky water varies with y, and is given by $Q(y) \mathrm{kg} / \mathrm{m}^{3}$.
- Note that the domain for both r and Q is $[0,4]$.
- You may assume that acceleration due to gravity is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Note that your answers below may include $r(y)$ and $Q(y)$.
a. [3 points] Write an expression that gives the approximate mass, in kilograms, of a slice of the murky water that is $\Delta y \mathrm{~m}$ thick and at a height of y meters. Your expression should not involve any integrals.

Answer: Mass of slice \approx \qquad
b. [3 points] Write an expression in terms of y that approximates the work, in joules, done in pumping a horizontal slice of murky water of thickness Δy at a height of y meters to 1 meter above the surface of the pond. Your expression should not involve any integrals.

Answer: Work \approx \qquad
c. [3 points] Write an expression involving one or more integrals that gives the total work, in joules, to completely drain the pond by pumping all the water to 1 meter above the pond.

Answer: \qquad

