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8. [8 points] Determine whether the following series converges absolutely, converges conditionally,
or diverges. Be sure to fully justify your answer, showing all work and indicating any theorems

you use.
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Solution: We have Z . Notice
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by limit comparison test. This tells us that the series cannot converge absolutely, but it may

so since g dlverges since it is a p—series, with p = 1, the series g diverges

still converge conditionally.
So we need to check convergence of the series without absolute value. Since this is an
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converges.
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